Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
J Am Chem Soc. 2012 Sep 12;134(36):15016-21. doi: 10.1021/ja3055639. Epub 2012 Aug 31.
We have synthesized, characterized, and computationally simulated/validated the behavior of two new metal-organic framework (MOF) materials displaying the highest experimental Brunauer-Emmett-Teller (BET) surface areas of any porous materials reported to date (7000 m(2)/g). Key to evacuating the initially solvent-filled materials without pore collapse, and thereby accessing the ultrahigh areas, is the use of a supercritical CO(2) activation technique. Additionally, we demonstrate computationally that by shifting from phenyl groups to "space efficient" acetylene moieties as linker expansion units, the hypothetical maximum surface area for a MOF material is substantially greater than previously envisioned (14600 m(2)/g (or greater) versus ~10500 m(2)/g).
我们合成、表征并通过计算模拟/验证了两种新的金属-有机骨架(MOF)材料的行为,这两种材料具有迄今为止报道的所有多孔材料中最高的实验比表面积(7000 m2/g)。为了在不发生孔塌陷的情况下排空最初充满溶剂的材料,从而获得超高面积,关键是使用超临界 CO2 激活技术。此外,我们通过计算证明,通过将苯基团转换为“空间有效”的乙炔基团作为连接扩展单元,MOF 材料的假设最大表面积远远大于先前的设想(14600 m2/g(或更高)比~10500 m2/g)。