Suppr超能文献

开发能够准确预测正颌手术后软组织变化的人工智能需要多少数据?

What amount of data is required to develop artificial intelligence that can accurately predict soft tissue changes after orthognathic surgery?

作者信息

Kim Jong-Hak, Kwon Naeun, Park Ji-Ae, Youn Sung Bin, Seo Byoung-Moo, Lee Shin-Jae

机构信息

Graduate Student (Ph.D), Department of Orthodontics, Seoul National University, Seoul, Korea.

Clinical Lecturer, Department of Orthodontics, Seoul National University Dental Hospital, Seoul, Korea.

出版信息

Angle Orthod. 2025 Jun 18;95(5):467-473. doi: 10.2319/010125-1. eCollection 2025 Sep.

Abstract

OBJECTIVES

To suggest a sample size calculation method to develop artificial intelligence (AI) that can predict soft tissue changes after orthognathic surgery with clinically acceptable accuracy.

MATERIALS AND METHODS

From data collected from 705 patients who had undergone combined surgical-orthodontic treatment, 10 subsets of the data were generated through random resampling procedures, specifically with reduced data sizes of 75, 100, 150, 200, 300, 400, 450, 500, 600, and 700. Resampling was repeated four times, and each subset was used to create a total of 40 AI models using a deep-learning algorithm. The prediction results for soft tissue change after orthognathic surgery were compared across all 40 AI models based on their sample sizes. Clinically acceptable accuracy was set as a 1.5-mm prediction error. The predictive performance of AI models was evaluated on the lower lip, which was selected as a primary outcome variable and a benchmark landmark. Linear regression analysis was conducted to estimate the relationship between sample size and prediction error.

RESULTS

The prediction error decreased with increasing sample size. A sample size greater than 1700 datasets was estimated as being required for the development of an AI model with a prediction error < 1.5 mm at the lower lip area.

CONCLUSIONS

A fairly large quantity of orthognathic surgery data seemed to be necessary to develop software programs for visualizing surgical treatment objectives with clinically acceptable accuracy.

摘要

目的

提出一种样本量计算方法,以开发能够以临床可接受的准确性预测正颌外科手术后软组织变化的人工智能(AI)。

材料与方法

从705例接受过正畸联合手术治疗的患者收集的数据中,通过随机重采样程序生成10个数据子集,具体数据量减少为75、100、150、200、300、400、450、500、600和700。重采样重复4次,每个子集使用深度学习算法创建总共40个人工智能模型。基于样本量,对所有40个人工智能模型中正颌外科手术后软组织变化的预测结果进行比较。将临床可接受的准确性设定为1.5毫米的预测误差。以下唇作为主要结局变量和基准标志点,评估人工智能模型的预测性能。进行线性回归分析以估计样本量与预测误差之间的关系。

结果

预测误差随着样本量的增加而降低。估计需要大于1700个数据集的样本量才能开发出在下唇区域预测误差<1.5毫米的人工智能模型。

结论

开发用于可视化具有临床可接受准确性的手术治疗目标的软件程序似乎需要相当大量的正颌外科手术数据。

相似文献

本文引用的文献

1
Sample size calculation for an artificial intelligence study.
Am J Orthod Dentofacial Orthop. 2025 May;167(5):616-620. doi: 10.1016/j.ajodo.2025.01.008.
8
Factors influencing the development of artificial intelligence in orthodontics.影响正畸学中人工智能发展的因素。
Orthod Craniofac Res. 2024 Dec;27 Suppl 2(Suppl 2):6-12. doi: 10.1111/ocr.12806. Epub 2024 May 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验