Suppr超能文献

在液体衰减反转恢复磁共振成像中,探索与白质高信号成像亚型相关的危险因素的异质性。

Exploration of heterogeneity in risk factors associated with imaging subtypes of white matter hyperintensities on fluid-attenuated inversion recovery magnetic resonance imaging.

作者信息

Li Yonglong, Zhang Xiufu, Wang Haotian, Jiang Linrong, Gu Zhaoyang, Zhou Jun, Liang Ruipeng

机构信息

Department of Radiology, Jiangjin Central Hospital of Chongqing, Chongqing, China.

出版信息

Front Neurol. 2025 Aug 26;16:1647065. doi: 10.3389/fneur.2025.1647065. eCollection 2025.

Abstract

BACKGROUND

White matter hyperintensity (WMH), a critical early biomarker in cerebrovascular/neurodegenerative diseases, has traditionally been studied via global volume or subjective scoring, which overlooks its spatial heterogeneity, leading to conflicting risk factor conclusions. Recent neuroimaging advances enable "subtype resolution" research, but standardized assessments remain lacking. This study evaluates WMH risk factor spatial variability and constructs a risk stratification model to support precision prevention.

METHODS

This study retrospectively enrolled inpatients and outpatients aged ≥40 years [median 70.0, (59.0-77.0)] who underwent head MRI examinations due to neurological symptoms or suspected cerebrovascular disease between January 2023 and December 2024.excluding those with imaging contraindications, intracranial masses, or technical artifacts. Data included demographics (age, sex), medical history (hypertension, diabetes), and lab markers (creatinine, cystatin C). FLAIR MRI (3.0 T United Imaging uMR780) was used to acquire images. WMH volume and Fazekas scores were automatically quantified via the United Imaging AI module (UAI. OCR, R001) and validated by two senior neuroradiologists. Stratification included semi-quantitative Fazekas scoring (PWMH:periventricular WMH, DWMH:deep WMH) and anatomical segmentation (4 subregions: ventricular, periventricular, DWMH, juxtacortical). Statistical methods included Mann-Whitney U and chi-square tests for group comparisons, binary logistic regression for risk factors of moderate-severe WMH (Fazekas2-3), and multiple linear regression for volume associations ( < 0.05 significant).

RESULTS

Compared with absent or mild WMH (Fazekas 0-1), Group comparisons revealed that advanced age, hypertension, and abnormal renal function markers [creatinine, cystatin C, β2-microglobulin (β2-MG)] were common risk factors for moderate-severe WMH (all  < 0.0001). The prevalence of coronary heart disease was higher in the moderate-severe PWMH group than in the absent or mild group (22.9% vs. 12.3%,  = 0.001). In contrast, the moderate-to-severe DWMH group exhibited higher rates of smoking (40.3% vs. 30.2%), alcohol consumption (35.6% vs. 26.1%), and diabetes (47.0% vs. 34.8%) compared with the absent or mild group, while the prevalence of hyperlipidemia was lower (42.95% vs. 52.43%,  = 0.04). Multivariate models revealed that moderate-severe PWMH driven by age (OR = 1.09/year), hypertension (OR = 2.92), creatinine (OR = 2.07); moderate-severe DWMH by age (OR = 1.034/year), hypertension (OR = 2.10), smoking (OR = 1.98), diabetes (OR = 1.55), β2-MG (OR = 1.79). Cys-C (OR = 0.52) and hyperlipidemia (OR = 0.66) inversely associated with moderate-severe PWMH and moderate-severe DWMH, respectively ( < 0.05). Linear regression analysis demonstrated that age and hypertension strongly affected PWMH volume ( = 0.236-3.618); diabetes expanded periventricular lesions ( = 3.073); coronary heart disease and creatinine increased juxtacortical WMH ( = 0.232-0.280); and hyperlipidemia was inversely correlated with DWMH ( = -0.783) and juxtacortical WMH ( = -0.194) (all  < 0.05).

CONCLUSION

WMH exhibits spatial heterogeneity with distinct mechanisms: PWMH associates with coronary/renal issues; DWMH with smoking/diabetes. Spatial classification optimizes risk stratification, guiding subtype-specific interventions and individualized prevention for cerebral small vessel disease.

摘要

背景

白质高信号(WMH)是脑血管/神经退行性疾病的关键早期生物标志物,传统上通过总体积或主观评分进行研究,这忽略了其空间异质性,导致危险因素结论相互矛盾。最近的神经影像学进展使“亚型分辨率”研究成为可能,但仍缺乏标准化评估。本研究评估WMH危险因素的空间变异性,并构建风险分层模型以支持精准预防。

方法

本研究回顾性纳入了2023年1月至2024年12月期间因神经系统症状或疑似脑血管疾病接受头部MRI检查的年龄≥40岁[中位数70.0,(59.0 - 77.0)]的住院患者和门诊患者,排除有影像禁忌证、颅内肿块或技术伪影的患者。数据包括人口统计学信息(年龄、性别)、病史(高血压、糖尿病)和实验室指标(肌酐、胱抑素C)。使用FLAIR MRI(3.0T联影uMR780)获取图像。WMH体积和 Fazekas评分通过联影人工智能模块(UAI. OCR,R001)自动定量,并由两名资深神经放射科医生进行验证。分层包括半定量Fazekas评分(PWMH:脑室周围WMH,DWMH:深部WMH)和解剖分割(4个亚区域:脑室、脑室周围、DWMH、皮质下)。统计方法包括用于组间比较的Mann - Whitney U检验和卡方检验、用于中度至重度WMH(Fazekas2 - 3)危险因素的二元逻辑回归以及用于体积关联的多元线性回归(P < 0.05为显著)。

结果

与无或轻度WMH(Fazekas 0 - 1)相比,组间比较显示高龄、高血压和肾功能异常标志物[肌酐、胱抑素C、β2 - 微球蛋白(β2 - MG)]是中度至重度WMH的常见危险因素(均P < 0.0001)。中度至重度PWMH组冠心病的患病率高于无或轻度组(22.9%对12.3%,P = 0.001)。相比之下,中度至重度DWMH组与无或轻度组相比,吸烟率(40.3%对30.2%)、饮酒率(35.6%对26.1%)和糖尿病患病率(47.0%对34.8%)更高,而高脂血症患病率更低(42.95%对52.43%,P = 0.04)。多变量模型显示,年龄(OR = 1.09/年)、高血压(OR = 2.92)、肌酐(OR = 2.07)驱动中度至重度PWMH;年龄(OR = 1.034/年)、高血压(OR = 2.10)、吸烟(OR = 1.98)、糖尿病(OR = 1.55)、β2 - MG(OR = 1.79)驱动中度至重度DWMH。胱抑素C(OR = 0.52)和高脂血症(OR = 0.66)分别与中度至重度PWMH和中度至重度DWMH呈负相关(P < 0.05)。线性回归分析表明,年龄和高血压强烈影响PWMH体积(P = 0.236 - 3.618);糖尿病扩大脑室周围病变(P = 3.073);冠心病和肌酐增加皮质下WMH(P = 0.232 - 0.280);高脂血症与DWMH(P = -0.783)和皮质下WMH(P = -0.194)呈负相关(均P < 0.05)。

结论

WMH表现出空间异质性,其机制不同:PWMH与心脏/肾脏问题相关;DWMH与吸烟/糖尿病相关。空间分类优化了风险分层方法,指导针对脑小血管疾病的亚型特异性干预和个体化预防。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a87a/12420908/756f8fe205c4/fneur-16-1647065-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验