Suppr超能文献

磁共振血管造影术自动定量检测脑微出血:与血管危险因素、白质高信号负荷及认知功能的关联

Automated Quantification of Cerebral Microbleeds in SWI: Association with Vascular Risk Factors, White Matter Hyperintensity Burden, and Cognitive Function.

作者信息

Ko Ji Su, Choi Yangsean, Jeong Eun Seon, Kim Hyun-Jung, Lee Grace Yoojin, Park Ji Eun, Kim Namkug, Kim Ho Sung

机构信息

From the Department of Radiology and Research Institute of Radiology (J.S.K., Y.C., E.S.J., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Republic of Korea.

From the Department of Radiology and Research Institute of Radiology (J.S.K., Y.C., E.S.J., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Republic of Korea

出版信息

AJNR Am J Neuroradiol. 2025 May 2;46(5):1007-1015. doi: 10.3174/ajnr.A8552.

Abstract

BACKGROUND AND PURPOSE

The amount and distribution of cerebral microbleeds (CMB) are important risk factors for cognitive impairment. Our objective was to train and validate a deep learning (DL)-based segmentation model for cerebral microbleeds (CMBs) on SWI and to find associations among CMB, cognitive impairment, and vascular risk factors.

MATERIALS AND METHODS

Participants in this single-institution retrospective study underwent brain MRI to evaluate cognitive impairment between January and September 2023. For training the DL model, the nnU-Net framework was used without modifications. The performance of the DL model was evaluated on independent internal and external validation data sets. Linear regression analysis was used to find associations among log-transformed CMB numbers, cognitive function (Mini-Mental Status Examination [MMSE]), white matter hyperintensity (WMH) burden, and clinical vascular risk factors (age, sex, hypertension, diabetes, lipid profiles, and body mass index).

RESULTS

Training of the DL model ( = 287) resulted in a robust segmentation performance with an average Dice score of 0.73 (95% CI, 0.67-0.79) in an internal validation set ( = 67) and modest performance in an external validation set (Dice score = 0.46; 95% CI, 0.33-0.59;  = 68). In a temporally independent clinical data set ( = 448), older age, hypertension, and WMH burden were significantly associated with CMB numbers in all distributions (total, lobar, deep, and cerebellar; all < .01). The MMSE was significantly associated with hyperlipidemia (β = 1.88; 95% CI, 0.96-2.81; < .001), WMH burden (β = -0.17 per 1% WMH burden, 95% CI, -0.27-0.08;  < . 001), and total CMB number (β = -0.01 per 1 CMB, 95% CI, -0.02-0.001; = .04) after adjusting for age and sex.

CONCLUSIONS

The DL model showed a robust segmentation performance for CMB. In all distributions, CMB had significant positive associations with WMH burden. Increased WMH burden and CMB numbers were associated with decreased cognitive function.

摘要

背景与目的

脑微出血(CMB)的数量和分布是认知障碍的重要危险因素。我们的目标是训练并验证基于深度学习(DL)的SWI序列脑微出血(CMB)分割模型,并找出CMB、认知障碍和血管危险因素之间的关联。

材料与方法

本单机构回顾性研究的参与者于2023年1月至9月接受脑部MRI检查以评估认知障碍。为训练DL模型,未作修改直接使用nnU-Net框架。在独立的内部和外部验证数据集上评估DL模型的性能。采用线性回归分析来找出对数转换后的CMB数量、认知功能(简易精神状态检查表[MMSE])、白质高信号(WMH)负荷和临床血管危险因素(年龄、性别、高血压、糖尿病、血脂谱和体重指数)之间的关联。

结果

DL模型在287例训练数据上,内部验证集(67例)的分割性能良好,平均Dice评分为0.73(95%CI,0.67 - 0.79),外部验证集的性能一般(Dice评分 = 0.46;95%CI,0.33 - 0.59;68例)。在一个时间独立的临床数据集(448例)中,年龄较大、高血压和WMH负荷与所有分布(总计、叶性、深部和小脑;均P <.01)的CMB数量显著相关。调整年龄和性别后,MMSE与高脂血症(β = 1.88;95%CI,0.96 - 2.81;P <.001)、WMH负荷(每1%WMH负荷β = -0.17,95%CI [-0.27, -0.08];P <.001)和总CMB数量(每1个CMBβ = -0.01,95%CI [-0.02, -0.001];P = 0.04)显著相关。

结论

DL模型对CMB显示出良好的分割性能。在所有分布中,CMB与WMH负荷均有显著正相关。WMH负荷增加和CMB数量增多与认知功能下降有关。

相似文献

10
Pathways linking regional hyperintensities in the brain and slower gait.连接大脑区域高信号与步态迟缓的通路。
Neuroimage. 2014 Oct 1;99:7-13. doi: 10.1016/j.neuroimage.2014.05.017. Epub 2014 May 17.

本文引用的文献

3
Diagnosis and Management of Cerebral Small Vessel Disease.脑小血管病的诊断与管理
Continuum (Minneap Minn). 2023 Apr 1;29(2):501-518. doi: 10.1212/CON.0000000000001232.
8
Cerebral Microbleed Automatic Detection System Based on the "Deep Learning".基于“深度学习”的脑微出血自动检测系统
Front Med (Lausanne). 2022 Mar 24;9:807443. doi: 10.3389/fmed.2022.807443. eCollection 2022.
9
Volume of White Matter Hyperintensities, and Cerebral Micro-Bleeds.脑白质高信号体积和脑微出血。
J Stroke Cerebrovasc Dis. 2021 Aug;30(8):105905. doi: 10.1016/j.jstrokecerebrovasdis.2021.105905. Epub 2021 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验