Suppr超能文献

基于MRI图像的脑肿瘤分类可解释深度集成元学习框架

Explainable Deep Ensemble Meta-Learning Framework for Brain Tumor Classification Using MRI Images.

作者信息

Kakon Shawon Chakrabarty, Sazid Zawad Al, Begum Ismat Ara, Samad Md Abdus, Hosen A S M Sanwar

机构信息

Department of Artificial Intelligence and Big Data, Woosong University, Daejeon 34606, Republic of Korea.

Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea.

出版信息

Cancers (Basel). 2025 Aug 30;17(17):2853. doi: 10.3390/cancers17172853.

Abstract

Brain tumors can severely impair neurological function, leading to symptoms such as headaches, memory loss, motor coordination deficits, and visual disturbances. In severe cases, they may cause permanent cognitive damage or become life-threatening without early detection. To address this, we propose an interpretable deep ensemble model for tumor detection in Magnetic Resonance Imaging (MRI) by integrating pre-trained Convolutional Neural Networks-EfficientNetB7, InceptionV3, and Xception-using a soft voting ensemble to improve classification accuracy. The framework is further enhanced with a Light Gradient Boosting Machine as a meta-learner to increase prediction accuracy and robustness within a stacking architecture. Hyperparameter tuning is conducted using Optuna, and overfitting is mitigated through batch normalization, L2 weight decay, dropout, early stopping, and extensive data augmentation. These regularization strategies significantly enhance the model's generalization ability within the BR35H dataset. The framework achieves a classification accuracy of 99.83 on the MRI dataset of 3060 images. To improve interpretability and build clinical trust, Explainable Artificial Intelligence methods Grad-CAM++, LIME, and SHAP are employed to visualize the factors influencing model predictions, effectively highlighting tumor regions within MRI scans. This establishes a strong foundation for further advancements in radiology decision support systems.

摘要

脑肿瘤会严重损害神经功能,导致头痛、失忆、运动协调障碍和视觉障碍等症状。在严重情况下,若不及早发现,它们可能会造成永久性认知损伤或危及生命。为解决这一问题,我们提出了一种用于磁共振成像(MRI)肿瘤检测的可解释深度集成模型,该模型通过集成预训练的卷积神经网络——EfficientNetB7、InceptionV3和Xception,并使用软投票集成来提高分类准确率。该框架通过使用轻量级梯度提升机作为元学习器进一步增强,以在堆叠架构中提高预测准确率和鲁棒性。使用Optuna进行超参数调整,并通过批量归一化、L2权重衰减、随机失活、提前停止和广泛的数据增强来减轻过拟合。这些正则化策略显著提高了模型在BR35H数据集中的泛化能力。该框架在3060幅图像的MRI数据集上实现了99.83的分类准确率。为了提高可解释性并建立临床信任,采用了可解释人工智能方法Grad-CAM++、LIME和SHAP来可视化影响模型预测的因素,有效地突出了MRI扫描中的肿瘤区域。这为放射学决策支持系统的进一步发展奠定了坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a556/12427295/68976408a760/cancers-17-02853-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验