Suppr超能文献

在立体定向体部放射治疗(SBRT)/立体定向放射外科治疗(SRS)中整合放射组学与人工智能(AI):个性化癌症治疗的预测工具

Integrating Radiomics and Artificial Intelligence (AI) in Stereotactic Body Radiotherapy (SBRT)/Stereotactic Radiosurgery (SRS): Predictive Tools for Tailored Cancer Care.

作者信息

Morelli Ilaria, Banini Marco, Greto Daniela, Visani Luca, Garlatti Pietro, Loi Mauro, Aquilano Michele, Valzano Marianna, Salvestrini Viola, Bertini Niccolò, Lastrucci Andrea, Tamberi Stefano, Livi Lorenzo, Desideri Isacco

机构信息

Oncology Unit, Santa Maria delle Croci Hospital, AUSL della Romagna, 48121 Ravenna, Italy.

Radiation Oncology Unit, Careggi University Hospital, 50134 Florence, Italy.

出版信息

Cancers (Basel). 2025 Sep 4;17(17):2906. doi: 10.3390/cancers17172906.

Abstract

This systematic review aims to analyze the literature on the application of AI in predicting patient outcomes and treatment-related toxicity in those undergoing SBRT or SRS across heterogeneous tumor sites. Our review conformed to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. PubMed, EMBASE and Scopus were systematically searched for English-language human studies evaluating AI for outcome and toxicity prediction in patients undergoing SBRT or SRS for solid tumors. Search terms included ("Stereotactic Body Radiotherapy" OR "SBRT" OR "Stereotactic Radiosurgery" OR "SRS" OR "Stereotactic Ablative Radiotherapy" OR "SABR") AND ("Artificial Intelligence" OR "AI" OR "Machine Learning" OR "Deep Learning" OR "Radiomics") AND ("Response Prediction" OR "Response to Treatment" OR "Outcome Prediction") AND ("Toxicity" OR "Side Effects" OR "Treatment Toxicities" OR "Adverse Events"). The search yielded 29 eligible retrospective studies, published between 2020 and 2025. Eight studies addressed early-stage primary lung cancer, highlighting the potential of AI-based models in predicting radiation-induced pneumonitis, fibrosis and local control. Five studies investigated AI models for predicting hepatobiliary toxicity following SBRT for liver tumors. Sixteen studies involved SRS-treated patients with brain metastases or benign intracranial neoplasms (e.g., arteriovenous malformations, vestibular schwannomas, meningiomas), exploring AI algorithms for predicting treatment response and radiation-induced changes. In the results, AI might have been exploited to both reaffirm already known clinical predictors and to identify novel imaging, dosimetric or biological biomarkers. Examples include predicting radiation pneumonitis in lung cancer, residual liver function in hepatic tumors and local recurrence in brain metastases, thus supporting tailored treatment decisions. Combining AI with SBRT could greatly enhance personalized cancer care by predicting patient-specific outcomes and toxicity. AI models analyze complex datasets, including imaging and clinical data, to identify patterns that traditional methods may miss, thus enabling more accurate risk stratification and reducing variability in treatment planning. With further research and clinical validation, this integration could make radiotherapy safer, more effective and contribute to advancement in precision oncology.

摘要

本系统评价旨在分析关于人工智能在预测接受立体定向体部放疗(SBRT)或立体定向放射外科治疗(SRS)的不同肿瘤部位患者的预后及治疗相关毒性方面的应用的文献。我们的评价符合系统评价和Meta分析的首选报告项目。系统检索了PubMed、EMBASE和Scopus数据库,以查找评估人工智能用于实体瘤SBRT或SRS患者预后和毒性预测的英文人体研究。检索词包括(“立体定向体部放疗”或“SBRT”或“立体定向放射外科”或“SRS”或“立体定向消融放疗”或“SABR”)以及(“人工智能”或“AI”或“机器学习”或“深度学习”或“放射组学”)以及(“反应预测”或“治疗反应”或“预后预测”)以及(“毒性”或“副作用”或“治疗毒性”或“不良事件”)。检索结果产生了29项符合条件的回顾性研究,发表于2020年至2025年之间。八项研究涉及早期原发性肺癌,突出了基于人工智能的模型在预测放射性肺炎、肺纤维化和局部控制方面的潜力。五项研究调查了用于预测肝脏肿瘤SBRT后肝胆毒性的人工智能模型。十六项研究涉及接受SRS治疗的脑转移瘤或颅内良性肿瘤(如动静脉畸形、前庭神经鞘瘤、脑膜瘤)患者,探索用于预测治疗反应和放射诱导变化的人工智能算法。在结果方面,人工智能可能已被用于既再次确认已知的临床预测因素,又识别新的影像、剂量学或生物学生物标志物。例如,预测肺癌中的放射性肺炎、肝脏肿瘤中的残余肝功能以及脑转移瘤中的局部复发,从而支持个性化的治疗决策。将人工智能与SBRT相结合可以通过预测患者特异性的预后和毒性来极大地加强个性化癌症护理。人工智能模型分析包括影像和临床数据在内的复杂数据集,以识别传统方法可能遗漏的模式,从而实现更准确的风险分层并减少治疗计划中的变异性。随着进一步的研究和临床验证,这种整合可以使放射治疗更安全、更有效,并有助于推进精准肿瘤学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c03/12428336/49bff17fc060/cancers-17-02906-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验