Suppr超能文献

智能医疗系统中用于医疗项目分类的具有特征细化的多尺度注意力网络

Multi-Scale Attention Networks with Feature Refinement for Medical Item Classification in Intelligent Healthcare Systems.

作者信息

Riaz Waqar, Ullah Asif, Ji Jiancheng Charles

机构信息

Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, 4089 Shahe West Road, Shenzhen 518055, China.

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

Sensors (Basel). 2025 Aug 26;25(17):5305. doi: 10.3390/s25175305.

Abstract

The increasing adoption of artificial intelligence (AI) in intelligent healthcare systems has elevated the demand for robust medical imaging and vision-based inventory solutions. For an intelligent healthcare inventory system, accurate recognition and classification of medical items, including medicines and emergency supplies, are crucial for ensuring inventory integrity and timely access to life-saving resources. This study presents a hybrid deep learning framework, EfficientDet-BiFormer-ResNet, that integrates three specialized components: EfficientDet's Bidirectional Feature Pyramid Network (BiFPN) for scalable multi-scale object detection, BiFormer's bi-level routing attention for context-aware spatial refinement, and ResNet-18 enhanced with triplet loss and Online Hard Negative Mining (OHNM) for fine-grained classification. The model was trained and validated on a custom healthcare inventory dataset comprising over 5000 images collected under diverse lighting, occlusion, and arrangement conditions. Quantitative evaluations demonstrated that the proposed system achieved a mean average precision (@0.5:0.95) of 83.2% and a top-1 classification accuracy of 94.7%, outperforming conventional models such as YOLO, SSD, and Mask R-CNN. The framework excelled in recognizing visually similar, occluded, and small-scale medical items. This work advances real-time medical item detection in healthcare by providing an AI-enabled, clinically relevant vision system for medical inventory management.

摘要

人工智能(AI)在智能医疗系统中的日益普及,增加了对强大的医学成像和基于视觉的库存解决方案的需求。对于智能医疗库存系统而言,准确识别和分类包括药品和急救用品在内的医疗物品,对于确保库存完整性和及时获取救命资源至关重要。本研究提出了一种混合深度学习框架EfficientDet-BiFormer-ResNet,该框架集成了三个专门组件:用于可扩展多尺度目标检测的EfficientDet双向特征金字塔网络(BiFPN)、用于上下文感知空间细化的BiFormer双层路由注意力以及通过三元组损失和在线困难负样本挖掘(OHNM)增强的ResNet-18用于细粒度分类。该模型在一个自定义医疗库存数据集上进行了训练和验证,该数据集包含在不同光照、遮挡和排列条件下收集的5000多张图像。定量评估表明,所提出的系统实现了83.2%的平均精度(@0.5:0.95)和94.7%的top-1分类准确率,优于YOLO、SSD和Mask R-CNN等传统模型。该框架在识别视觉上相似、被遮挡和小尺寸的医疗物品方面表现出色。这项工作通过提供一个用于医疗库存管理的人工智能驱动的、临床相关的视觉系统,推动了医疗保健中实时医疗物品检测的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验