Suppr超能文献

YOLO-AR:一种基于YOLOv11的改进型人工鱼礁分割算法。

YOLO-AR: An Improved Artificial Reef Segmentation Algorithm Based on YOLOv11.

作者信息

Wu Yuxiang, Jiang Tingchen, Xi Zhi, Yin Fei, Wang Xiuping

机构信息

College of Marine Technology and Surveying, Jiangsu Ocean University, Lianyungang 222005, China.

Lianyungang Water Resources Bureau, Lianyungang 222061, China.

出版信息

Sensors (Basel). 2025 Sep 2;25(17):5426. doi: 10.3390/s25175426.

Abstract

Artificial reefs serve as a crucial measure for preventing habitat degradation, enhancing primary productivity in marine areas, and restoring and increasing fishery resources, making them an essential component of marine ranching development. Accurate identification and detection of artificial reefs are vital for ecological conservation and fishery resource management. To achieve precise segmentation of artificial reefs in multibeam sonar images, this study proposes an improved YOLOv11-based model, YOLO-AR. Specifically, the DCCA (Dynamic Convolution Coordinate Attention) module is introduced into the backbone network to reduce the model's sensitivity to complex seafloor environments. Additionally, a small-object detection layer is added to the neck network, along with the ultra-lightweight dynamic upsampling operator DySample (Dynamic Sampling), which enhances the model's ability to segment small artificial reefs. Furthermore, some standard convolution layers in the backbone are replaced with ADown (Advanced Downsampling) to reduce the model's complexity. Experimental results demonstrate that YOLO-AR achieves an mAP@0.5 of 0.912, an intersection-over-union (IOU) of 0.832, and an F1 score of 0.908. Meanwhile, the parameters and model size of YOLO-AR are 2.67 million and 5.58 MB. Compared to other advanced segmentation models, YOLO-AR maintains a more lightweight structure while delivering a superior segmentation performance. In real-world multibeam sonar images, YOLO-AR can accurately segment artificial reefs, making it highly effective for practical applications.

摘要

人工鱼礁是防止栖息地退化、提高海洋区域初级生产力以及恢复和增加渔业资源的关键措施,使其成为海洋牧场发展的重要组成部分。准确识别和检测人工鱼礁对于生态保护和渔业资源管理至关重要。为了在多波束声纳图像中实现人工鱼礁的精确分割,本研究提出了一种基于改进的YOLOv11的模型YOLO-AR。具体而言,将动态卷积坐标注意力(DCCA)模块引入主干网络,以降低模型对复杂海底环境的敏感性。此外,在颈部网络中添加了一个小目标检测层,以及超轻量级动态上采样算子DySample(动态采样),增强了模型分割小型人工鱼礁的能力。此外,主干中的一些标准卷积层被ADown(高级下采样)取代,以降低模型的复杂度。实验结果表明,YOLO-AR的mAP@0.5为0.912,交并比(IOU)为0.832,F1分数为0.908。同时,YOLO-AR的参数和模型大小分别为267万和5.58MB。与其他先进的分割模型相比,YOLO-AR在保持更轻量级结构的同时提供了卓越的分割性能。在实际的多波束声纳图像中,YOLO-AR可以准确地分割人工鱼礁,使其在实际应用中非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6505/12431184/23390174a675/sensors-25-05426-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验