Suppr超能文献

增强农业中的实例分割:一种优化的YOLOv8解决方案。

Enhancing Instance Segmentation in Agriculture: An Optimized YOLOv8 Solution.

作者信息

Wang Qiaolong, Chen Dongshun, Feng Wenfei, Sun Liang, Yu Gaohong

机构信息

School of Mechanical Engineering, Zhejiang Sci.-Tech University, Hangzhou 310018, China.

Key Laboratory of Agricultural Equipment for Hilly and Mountainous Areas in Southeastern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2025 Sep 4;25(17):5506. doi: 10.3390/s25175506.

Abstract

To address the limitations of traditional segmentation algorithms in processing complex agricultural scenes, this paper proposes an improved YOLOv8n-seg model. Building upon the original three detection layers, we introduce a dedicated layer for small object detection, which significantly enhances the detection accuracy of small targets (e.g., people) after processing images through fourfold downsampling. In the neck network, we replace the C2f module with our proposed C2f_CPCA module, which incorporates a channel prior attention mechanism (CPCA). This mechanism dynamically adjusts attention weights across channels and spatial dimensions to effectively capture relationships between different spatial scales, thereby improving feature extraction and recognition capabilities while maintaining low computational complexity. Finally, we propose a C3RFEM module based on the RFEM architecture and integrate it into the main network. This module combines dilated convolutions and weighted layers to enhance feature extraction capabilities across different receptive field ranges. Experimental results demonstrated that the improved model achieved 1.4% and 4.0% increases in precision and recall rates on private datasets, respectively, with mAP@0.5 and mAP@0.5:0.95 metrics improved by 3.0% and 3.5%, respectively. In comparative evaluations with instance segmentation algorithms such as the YOLOv5 series, YOLOv7, YOLOv8n, YOLOv9t, YOLOv10n, YOLOv10s, Mask R-CNN, and Mask2Former, our model achieved an optimal balance between computational efficiency and detection performance. This demonstrates its potential for the research and development of small intelligent precision operation technology and equipment.

摘要

为了解决传统分割算法在处理复杂农业场景时的局限性,本文提出了一种改进的YOLOv8n-seg模型。在原始的三个检测层的基础上,我们引入了一个专门用于小目标检测的层,在对图像进行四倍下采样处理后,该层显著提高了小目标(如人)的检测精度。在颈部网络中,我们用我们提出的C2f_CPCA模块替换了C2f模块,并引入了通道先验注意力机制(CPCA)。该机制可动态调整跨通道和空间维度的注意力权重,以有效捕捉不同空间尺度之间的关系,从而在保持低计算复杂度的同时提高特征提取和识别能力。最后,我们提出了一种基于RFEM架构的C3RFEM模块,并将其集成到主网络中。该模块结合了空洞卷积和加权层,以增强不同感受野范围内的特征提取能力。实验结果表明,改进后的模型在私有数据集上的精度和召回率分别提高了1.4%和4.0%,mAP@0.5mAP@0.5:0.95指标分别提高了3.0%和3.5%。在与YOLOv5系列、YOLOv7、YOLOv8n、YOLOv9t、YOLOv10n、YOLOv10s、Mask R-CNN和Mask2Former等实例分割算法的对比评估中,我们的模型在计算效率和检测性能之间实现了最佳平衡。这证明了其在小型智能精准作业技术与装备研发中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9d6/12431344/64251ce440a1/sensors-25-05506-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验