Suppr超能文献

评估基础模型在帕金森病运动检查识别中的通用性。

Assessing the Generalizability of Foundation Models for the Recognition of Motor Examinations in Parkinson's Disease.

作者信息

Gundler Christopher, Wiederhold Alexander Johannes, Pötter-Nerger Monika

机构信息

Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.

Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.

出版信息

Sensors (Basel). 2025 Sep 4;25(17):5523. doi: 10.3390/s25175523.

Abstract

Current machine learning approaches focusing on motor symptoms in Parkinson's disease are commonly trained on small datasets and often lack generalizability from developmental setups to clinical applications. Foundation models using large, unlabeled datasets of healthy participants through self-supervised learning appear attractive for such setups with limited samples, despite the potential impact of motoric symptoms. Acting as an exemplar, this study aims to evaluate the robustness of fine-tuned models in recognizing movements related to motor examinations across datasets and recording setups. Accelerometer data of 51 participants with Parkinson's disease in three different training and fine-tuning setups were used to tailor the general model to the disease. Training the model on pre-trained weights, both partially (F = 0.70) and fully (F = 0.69), statistically significantly outperformed training the model from scratch (F = 0.55) in a nested cross-validation. For evaluation, the model's ability to process data recorded from 24 patients in clinic was tested. The models achieved lower mean F scores of 0.33 (train from scratch), 0.43 for full, and 0.48 for partial fine-tuning, but demonstrated improved generalizability and robustness regarding the orientation of sensors compared to training from scratch. Utilizing foundation models for accelerometer data trained on healthy participants and fine-tuned for clinical applications in movement disorders appears as an effective strategy for optimized generalizability with small datasets.

摘要

当前专注于帕金森病运动症状的机器学习方法通常在小数据集上进行训练,并且往往缺乏从开发设置到临床应用的通用性。尽管存在运动症状的潜在影响,但通过自监督学习使用健康参与者的大型未标记数据集的基础模型,对于样本有限的此类设置似乎具有吸引力。作为一个范例,本研究旨在评估微调模型在跨数据集和记录设置识别与运动检查相关的运动方面的稳健性。使用51名帕金森病患者在三种不同训练和微调设置下的加速度计数据,将通用模型调整为适用于该疾病。在预训练权重上训练模型,无论是部分(F = 0.70)还是完全(F = 0.69),在嵌套交叉验证中,在统计学上显著优于从头开始训练模型(F = 0.55)。为了进行评估,测试了模型处理从24名临床患者记录的数据的能力。模型的平均F分数较低,从头开始训练为0.33,完全微调为0.43,部分微调为0.48,但与从头开始训练相比,在传感器方向方面表现出更好的通用性和稳健性。利用在健康参与者上训练并针对运动障碍临床应用进行微调的加速度计数据基础模型,似乎是一种在小数据集上优化通用性的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ccb/12431391/f666552a6c93/sensors-25-05523-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验