Joseph Naomi, Marshall Ian, Seckler James, Kolluru Chaitanya, Petranka Nathan, Moon Juri, Shoffstall Andrew J, Pelot Nicole A, Jenkins Michael, Wilson David L
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106.
Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13410. doi: 10.1117/12.3049151. Epub 2025 Apr 2.
We are dissecting and imaging 100 human cadaver nerves with unprecedented range of anatomical coverage (from brainstem to abdomen) and imaging modalities. Our teams used 3D serial block-face Microscopy with Ultraviolet Surface Excitation (3D-MUSE) to image, visualize, and quantify the morphology and microanatomy of the human vagus nerve, providing three-dimensional insights into its structure and functional organization. We prepared 3-mm and 5-mm-long samples of human cervical vagus and median nerve using various staining and embedding techniques before imaging with 0.9-μm in-plane resolution and between 3-μm and 12-μm slice thickness. Staining quality varied across samples thus requiring training of a sample-based neural network rather than using a generalized analysis algorithm. We used few-shot learning to segment the fascicles, perineurium, and epineurium regions. We trained a 2D U-Net architecture with 4-8% of each sample's images before applying to a held-out test set. Performance achieved a mean Dice score range of 0.85±0.10 and 0.93±0.05 across various 3D-MUSE samples. We also investigated an initial pre-training step of the U-Net model to improve segmentation performance. Pre-training enabled the segmentation model to have better awareness of splitting fascicles in the held-out test set. From sample segmentation predictions, morphologic metrics such as nerve diameter, fascicle count, fascicle area, fascicle diameter, and perineurium thickness are calculated. Nerve fiber tractography from sample images highlight dynamic fascicle organization throughout 3-mm nerve samples These results demonstrate the importance and success of sample-based training for segmentation and nerve fiber tractography, with further training anticipated to yield even better outcomes.
我们正在解剖并成像100条人类尸体神经,其解剖覆盖范围(从脑干到腹部)和成像方式都是前所未有的。我们的团队使用具有紫外线表面激发功能的3D连续块面显微镜(3D-MUSE)对人类迷走神经的形态和微观解剖结构进行成像、可视化和量化,从而对其结构和功能组织有三维的了解。在以0.9微米的平面分辨率和3微米至12微米的切片厚度进行成像之前,我们使用各种染色和包埋技术制备了3毫米和5毫米长的人类颈迷走神经和正中神经样本。不同样本的染色质量各不相同,因此需要训练基于样本的神经网络,而不是使用通用分析算法。我们使用少样本学习来分割束状结构、神经束膜和神经外膜区域。我们在将2D U-Net架构应用于一个保留的测试集之前,用每个样本4%至8%的图像对其进行训练。在各种3D-MUSE样本中,性能的平均骰子系数范围为0.85±0.10和0.93±0.05。我们还研究了U-Net模型的初始预训练步骤,以提高分割性能。预训练使分割模型在保留的测试集中对分离束状结构有更好的认知。根据样本分割预测,计算神经直径、束状结构数量、束状结构面积、束状结构直径和神经束膜厚度等形态学指标。从样本图像进行的神经纤维束成像突出了整个3毫米神经样本中动态的束状结构组织。这些结果证明了基于样本的训练对于分割和神经纤维束成像的重要性和成功,预计进一步训练将产生更好的结果。