Suppr超能文献

利用深度学习技术对3D-MUSE图像进行人体迷走神经微观解剖研究。

Human microscopic vagus nerve anatomy using deep learning on 3D-MUSE images.

作者信息

Joseph Naomi, Kolluru Chaitanya, Seckler James, Chen Jun, Kim Justin, Jenkins Michael, Shofstall Andrew, Pelot Nikki, Wilson David L

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106.

Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12930. doi: 10.1117/12.3009682. Epub 2024 Apr 2.

Abstract

We are microscopically imaging and analyzing the human vagus nerve (VN) anatomy to create the first ever VN connectome to support modeling of neuromodulation therapies. Although micro-CT and MRI roughly identify vagus nerve anatomy, they lack the spatial resolution required to identify small fascicle splitting and merging, and perineurium boundaries. We developed 3D serial block-face Microscopy with Ultraviolet Surface Excitation (3D-MUSE), with 0.9-μm in-plane resolution and 3-μm cut thickness. 3D-MUSE is ideal for VN imaging, capturing large myelinated fibers, connective sheaths, fascicle dynamics, and nerve bundle tractography. Each 3-mm 3D-MUSE ROI generates ~1,000 grayscale images, necessitating automatic segmentation as over 50-hrs were spent manually annotating fascicles, perineurium, and epineurium in every 20th image, giving 50 images. We trained three types of multi-class deep learning segmentation models. First, 25 annotated images trained a 2D U-Net and Attention U-Net. Second, we trained a Vision Transformer (ViT) using self-supervised learning with 200 unlabeled images before refining the ViT's initialized weights of a U-Net Transformer with 25 training images and labels. Third, we created pseudo-3D images by concatenating each annotated image with an image ±k slices apart (k=1,10), and trained a 2D U-Net similarly. All models were tested on 25 held-out images and evaluated using Dice. While all trained models performed comparably, the 2D U-Net model trained on pseudo-3D images demonstrated highest Dice values (0.936). With sample-based-training, one obtains very promising results on thousands of images in terms of segmentation and nerve fiber tractography estimation. Additional training from more samples could obtain excellent results.

摘要

我们正在对人类迷走神经(VN)的解剖结构进行微观成像和分析,以创建首个VN连接组,为神经调节疗法的建模提供支持。尽管微型计算机断层扫描(micro-CT)和磁共振成像(MRI)大致可以识别迷走神经的解剖结构,但它们缺乏识别小束状神经分支和合并以及神经束膜边界所需的空间分辨率。我们开发了具有紫外线表面激发功能的3D连续块面显微镜(3D-MUSE),其平面分辨率为0.9μm,切割厚度为3μm。3D-MUSE非常适合VN成像,可捕获大型有髓纤维、结缔组织鞘、束状神经动力学和神经束纤维束成像。每个3毫米的3D-MUSE感兴趣区域(ROI)会生成约1000张灰度图像,由于手动标注每20张图像(共50张图像)中的神经束、神经束膜和神经外膜花费了超过50小时,因此需要自动分割。我们训练了三种类型的多类深度学习分割模型。首先,使用25张标注图像训练了一个二维U-Net和一个注意力U-Net。其次,我们在使用200张未标注图像进行自监督学习的情况下训练了一个视觉Transformer(ViT),然后用25张训练图像和标签对U-Net Transformer的ViT初始化权重进行优化。第三,我们通过将每个标注图像与相隔±k个切片(k = 1,10)的图像拼接来创建伪3D图像,并以类似方式训练了一个二维U-Net。所有模型都在25张保留图像上进行了测试,并使用Dice系数进行评估。虽然所有训练模型的表现相当,但在伪3D图像上训练的二维U-Net模型的Dice值最高(0.936)。通过基于样本的训练,在分割和神经纤维束成像估计方面,人们在数千张图像上获得了非常有前景的结果。从更多样本进行额外训练可能会获得优异的结果。

相似文献

本文引用的文献

5
Vagus nerve stimulation for drug-resistant epilepsy.迷走神经刺激术治疗耐药性癫痫。
Pract Neurol. 2020 May;20(3):189-198. doi: 10.1136/practneurol-2019-002210. Epub 2019 Dec 31.
6
Vagus Nerve Stimulation for Depression: A Systematic Review.迷走神经刺激治疗抑郁症:一项系统评价。
Front Psychol. 2019 Jan 31;10:64. doi: 10.3389/fpsyg.2019.00064. eCollection 2019.
8
Vagus Nerve Stimulation for the Treatment of Heart Failure: The INOVATE-HF Trial.迷走神经刺激治疗心力衰竭:INOVATE-HF 试验。
J Am Coll Cardiol. 2016 Jul 12;68(2):149-58. doi: 10.1016/j.jacc.2016.03.525. Epub 2016 Apr 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验