Hale Andrew T, Song Yuwei, Davies Caroline, Liu Shanrun, Gaskin Regan, Arynchyna-Smith Anastasia, Rocque Brandon G, Chong Zechen
Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
medRxiv. 2025 Sep 2:2025.09.01.25334358. doi: 10.1101/2025.09.01.25334358.
A prior integrative, multi-omics human genetics and functional genomics study identified maelstrom (), a gene involved in regulation of DNA transposon activity and genome structure, as a transcriptome-wide predictor of hydrocephalus (HC) in the brain cortex. Here we expand on this discovery and further characterize the evolutionary origin and expression of across developmental timescales and cell-lineages in the neonatal human brain towards a mechanistic understanding how variation in expression may cause HC.
To characterize the evolutionary, temporal, developmental, and lineages of expression in HC and the developing human brain.
Ensembl was used to delineate the evolution and taxonomy of across species. Analysis of single-cell RNA sequencing (scRNA-seq) of 49 brain regions across pre- and post-natal timescales from the Developing Human Brain Atlas (Allen Institute) identified temporal and spatial expression patterns. We quantified expression in primary cortical brain tissue obtained during the surgical treatment of HC.
We performed taxonomic gene-mapping to define the evolutionary origin of to assess suitability for mechanistic characterization and across species. We find that is among the top 0.01% human-specific genes and < 50% sequence homology among commonly used model organisms with highly divergent functions, necessitating mechanistic validation in human tissue. scRNA-seq of the non-disease prenatal human brain identified expression enriched in cortical excitatory neurons, which was recapitulated in primary HC brain tissue obtained during surgery. Finally, using scRNA-seq of primary HC brain tissue, we functionally validated reduced expression, consistent with a prior human TWAS analysis.
We identify the evolutionary, temporal, and developmental expression pattern of in the neonatal human brain. We also provide direct evidence for reduced expression in human HC brain tissue. These data, at least in part, implicate reduced expression underlying human HC across etiologies.
先前一项整合的多组学人类遗传学和功能基因组学研究确定,参与DNA转座子活性和基因组结构调控的基因“大漩涡”(Maelstrom,MELK)是大脑皮质中脑积水(HC)的全转录组预测因子。在此,我们扩展这一发现,并进一步描述MELK在新生儿人类大脑发育时间尺度和细胞谱系中的进化起源与表达,以深入理解MELK表达变异如何导致脑积水。
描述MELK在脑积水及发育中的人类大脑中的进化、时间、发育和谱系特征。
利用Ensembl数据库描绘MELK在不同物种间的进化和分类。对来自发育中人类大脑图谱(艾伦脑科学研究所)的产前和产后49个脑区的单细胞RNA测序(scRNA-seq)分析确定了MELK的时空表达模式。我们对脑积水手术治疗期间获取的原发性皮质脑组织中的MELK表达进行了定量分析。
我们进行了分类基因映射,以确定MELK的进化起源,评估其在不同物种间进行机制表征的适用性。我们发现,MELK属于人类特异性最高的0.01%的基因,在常用模型生物中序列同源性小于50%,且功能差异很大,因此需要在人体组织中进行机制验证。对非疾病状态的产前人类大脑进行scRNA-seq分析发现,MELK表达在皮质兴奋性神经元中富集,这在手术期间获取的原发性脑积水脑组织中得到了证实。最后,利用原发性脑积水脑组织的scRNA-seq,我们从功能上验证了MELK表达降低,这与之前的人类全转录组关联研究分析结果一致。
我们确定了MELK在新生儿人类大脑中的进化、时间和发育表达模式。我们还提供了直接证据,证明人类脑积水脑组织中MELK表达降低。这些数据至少部分表明,不同病因的人类脑积水背后都存在MELK表达降低的情况。