Cao Xiongfeng, Yi Yide, Ji Minjun, Liu Yanfang, Wang Dongqing, Zhu Haitao
Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China.
Front Med (Lausanne). 2025 Aug 29;12:1633447. doi: 10.3389/fmed.2025.1633447. eCollection 2025.
Vitamin C (VC), a pleiotropic molecule with context-dependent redox properties, exhibits dual roles in cancer biology through dose-dependent mechanisms. While nutritional VC intake demonstrates chemopreventive effects by scavenging carcinogen-induced reactive oxygen species (ROS) and maintaining genomic stability, high-dose intravenous VC acts as a prooxidant to selectively kill tumor cells via ROS-mediated deoxyribonucleic acid (DNA) damage, adenosine triphosphate (ATP) depletion, and HIF-1α degradation. Preclinical studies reveal VC's ability to reprogram the tumor microenvironment (TME) through collagen hydroxylation-mediated extracellular matrix remodeling, Treg suppression, and enhancement of CD8+ T cell infiltration. Importantly, VC synergizes with conventional therapies by radio-sensitizing hypoxic tumors through oxygen-sparing effects and reversing platinum resistance via glutathione depletion. Early-phase clinical trials corroborate VC's safety profile and potential to ameliorate chemotherapy-induced fatigue and nephrotoxicity. However, translational challenges persist, including the lack of pharmacokinetic standardization between oral and intravenous routes, tumor-type-specific response heterogeneity, and incomplete understanding of VC's immunomodulatory dynamics. Emerging strategies integrating VC with checkpoint inhibitors and TME-targeted nano-delivery systems show promise in preclinical models. This review synthesizes mechanistic insights from redox biology and immunometabolism to clinical trial data, proposing a framework for optimizing VC-based combination therapies while addressing critical gaps in biomarker development and dose scheduling. Deciphering the molecular determinants of VC's context-dependent anticancer effects may accelerate its rational clinical deployment.
维生素C(VC)是一种具有依赖于环境的氧化还原特性的多效性分子,通过剂量依赖性机制在癌症生物学中发挥双重作用。虽然通过营养途径摄入VC可通过清除致癌物诱导的活性氧(ROS)和维持基因组稳定性来发挥化学预防作用,但高剂量静脉注射VC则作为一种促氧化剂,通过ROS介导的脱氧核糖核酸(DNA)损伤、三磷酸腺苷(ATP)耗竭和缺氧诱导因子-1α(HIF-1α)降解来选择性杀死肿瘤细胞。临床前研究表明,VC能够通过胶原羟基化介导的细胞外基质重塑、调节性T细胞(Treg)抑制和增强CD8+T细胞浸润来重新编程肿瘤微环境(TME)。重要的是,VC通过对缺氧肿瘤的放射增敏作用和通过消耗谷胱甘肽来逆转铂耐药性,与传统疗法产生协同作用。早期临床试验证实了VC的安全性以及改善化疗引起的疲劳和肾毒性的潜力。然而,转化过程中仍存在挑战,包括口服和静脉途径之间缺乏药代动力学标准化、肿瘤类型特异性反应异质性以及对VC免疫调节动力学的理解不完整。将VC与检查点抑制剂和TME靶向纳米递送系统相结合的新兴策略在临床前模型中显示出前景。本综述综合了从氧化还原生物学和免疫代谢到临床试验数据的机制见解,提出了一个优化基于VC的联合疗法的框架,同时解决生物标志物开发和剂量安排方面的关键差距。解读VC依赖于环境的抗癌作用的分子决定因素可能会加速其合理的临床应用。