Suppr超能文献

基于群体智能机器学习的可解释模型对全身麻醉患者术后恢复的预测效果

Predictive effect of postoperative recovery in general anesthesia patients using interpretable models based on swarm intelligence machine learning.

作者信息

Hua Chenqiao, Chu Yeyuan, Zhou Minshu, Ye Jia, Xu Xin

机构信息

Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine Alar Hospital, Alar, China.

出版信息

Front Physiol. 2025 Aug 29;16:1565548. doi: 10.3389/fphys.2025.1565548. eCollection 2025.

Abstract

OBJECTIVE

To analyze the clinical value of predicting postoperative recovery in patients undergoing general anesthesia using an interpretable model based on swarm intelligence machine learning.

METHODS

This study retrospectively collected data from 1,128 patients who underwent general anesthesia at Sir Run Run Shaw Hospital, affiliated with Zhejiang University School of Medicine, from January 2021 to January 2024. Based on predefined inclusion and exclusion criteria, a total of 1,128 patients were included in the study, comprising Dataset A. Additionally, patients meeting the same criteria from Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine Alar Hospital during the period January 2021 - January 2024 were selected, constituting Dataset B. Dataset a was used for model training and testing, and dataset b was used for external validation of the model. Patients who experienced at least one of the following conditions-hypothermia upon admission to the Post-Anesthesia Care Unit (PACU), delayed discharge from PACU, or delayed awakening-were classified into the poor postoperative recovery group. The remaining patients were classified into the good postoperative recovery group. Clinical data were analyzed using a swarm intelligence machine learning algorithm to develop a predictive model for postoperative recovery in patients undergoing general anesthesia. The value of the identified features was analyzed, and a visualization system was constructed.

RESULTS

LASSO regression identified seven variables: surgery duration, anesthesia duration, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein (CRP), serum creatinine, body mass index (BMI), and age. The swarm intelligence machine learning model, with XGBoost as the base learner, demonstrated the best performance. It achieved an F1 score of 0.8447 and an area under the curve (AUC) of 0.9265 on the training set, and an F1 score of 0.7735 and an AUC of 0.8808 on the test set. The validation results demonstrated that the model achieved: ROC-AUC: 0.8383, PR-AUC: 0.8241 This model can be used to predict postoperative recovery in patients undergoing general anesthesia.

CONCLUSION

The application of an interpretable swarm intelligence machine learning model can assist in predicting postoperative recovery in patients undergoing general anesthesia, thereby aiding clinicians in formulating subsequent intervention plans.

摘要

目的

分析基于群体智能机器学习的可解释模型在预测全身麻醉患者术后恢复情况中的临床价值。

方法

本研究回顾性收集了2021年1月至2024年1月在浙江大学医学院附属邵逸夫医院接受全身麻醉的1128例患者的数据。根据预先定义的纳入和排除标准,共有1128例患者纳入研究,构成数据集A。此外,选取了2021年1月至2024年期间浙江大学医学院附属邵逸夫阿拉尔医院符合相同标准的患者,构成数据集B。数据集A用于模型训练和测试,数据集B用于模型的外部验证。将在麻醉后护理单元(PACU)入院时出现至少以下一种情况的患者——体温过低、从PACU延迟出院或苏醒延迟——分类为术后恢复不良组。其余患者分类为术后恢复良好组。使用群体智能机器学习算法分析临床数据,以建立全身麻醉患者术后恢复的预测模型。分析所识别特征的价值,并构建可视化系统。

结果

LASSO回归确定了七个变量:手术时长、麻醉时长、中性粒细胞与淋巴细胞比值(NLR)、C反应蛋白(CRP)、血清肌酐、体重指数(BMI)和年龄。以XGBoost作为基础学习器的群体智能机器学习模型表现最佳。在训练集上,其F1分数为0.8447,曲线下面积(AUC)为0.9265;在测试集上,F1分数为0.7735,AUC为0.8808。验证结果表明该模型实现了:ROC-AUC:0.8383,PR-AUC:0.8241。该模型可用于预测全身麻醉患者的术后恢复情况。

结论

可解释的群体智能机器学习模型的应用有助于预测全身麻醉患者的术后恢复情况,从而帮助临床医生制定后续干预计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6feb/12426152/e35ded85aca8/fphys-16-1565548-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验