Fu Xiaohang, Cao Yue, Bian Beilei, Wang Chuhan, Graham Dinny, Pathmanathan Nirmala, Patrick Ellis, Kim Jinman, Yang Jean Yee Hwa
School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia.
School of Computer Science, The University of Sydney, Sydney, New South Wales, Australia.
Nat Methods. 2025 Sep 15. doi: 10.1038/s41592-025-02795-z.
The increased use of spatially resolved transcriptomics provides new biological insights into disease mechanisms. However, the high cost and complexity of these methods are barriers to broader application. Consequently, methods have been created to predict spot-based gene expression from routinely collected histology images. Recent benchmarking showed that current methodologies have limited accuracy and spatial resolution, constraining translational capacity. Here, we introduce GHIST, a deep learning-based framework that predicts spatial gene expression at single-cell resolution by leveraging subcellular spatial transcriptomics and synergistic relationships between multiple layers of biological information. We validated GHIST using public datasets and The Cancer Genome Atlas data, demonstrating its flexibility across different spatial resolutions and superior performance. Our results underscore the utility of in silico generation of single-cell spatial gene expression measurements and the capacity to enrich existing datasets with a spatially resolved omics modality, paving the way for scalable multi-omics analysis and biomarker identification.
空间分辨转录组学应用的增加为疾病机制提供了新的生物学见解。然而,这些方法的高成本和复杂性阻碍了其更广泛的应用。因此,人们开发了一些方法,用于从常规收集的组织学图像预测基于斑点的基因表达。最近的基准测试表明,当前的方法准确性和空间分辨率有限,限制了其转化应用能力。在此,我们介绍了GHIST,这是一个基于深度学习的框架,通过利用亚细胞空间转录组学和多层生物信息之间的协同关系,以单细胞分辨率预测空间基因表达。我们使用公共数据集和癌症基因组图谱数据对GHIST进行了验证,证明了其在不同空间分辨率下的灵活性和卓越性能。我们的结果强调了在计算机上生成单细胞空间基因表达测量数据的实用性,以及用空间分辨的组学模式丰富现有数据集的能力,为可扩展的多组学分析和生物标志物识别铺平了道路。