Karkhur Samendra, Beri Arushi, Verma Vidhya, Gupta Saroj, Singh Priti
Ophthalmology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND.
Cureus. 2025 Aug 15;17(8):e90142. doi: 10.7759/cureus.90142. eCollection 2025 Aug.
Artificial intelligence (AI) is increasingly transforming the landscape of neuro-ophthalmology by enabling earlier and more precise identification of optic nerve and visual pathway disorders. With the growing complexity of multimodal diagnostic imaging and functional assessments, AI offers a scalable solution to enhance diagnostic accuracy and streamline clinical workflows. Recent advancements, particularly in deep learning (DL) and convolutional neural networks (CNNs), have shown notable potential in interpreting fundus photography, optical coherence tomography (OCT), and magnetic resonance imaging (MRI), facilitating the detection of conditions such as optic neuritis (ON), ischemic optic neuropathy, papilledema, and glaucomatous optic nerve damage. In parallel, AI-driven analysis of visual field (VF) tests has demonstrated improved consistency in assessing disease progression, supporting longitudinal monitoring. The development of mobile diagnostic applications and integrated decision-support systems further extends the utility of AI, particularly in settings with limited specialist access. Despite these promising innovations, critical challenges remain. These include data heterogeneity across populations and imaging platforms, the opaque nature of many AI models, which limits clinical interpretability, and the absence of standardized regulatory and ethical guidelines. As the field moves toward broader clinical adoption, success will depend on robust multicenter validation studies, the creation of explainable AI (XAI) frameworks, and the implementation of strong governance structures to ensure safety, fairness, and accountability in patient care.
人工智能(AI)正日益改变神经眼科的格局,它能够更早、更精确地识别视神经和视觉通路疾病。随着多模态诊断成像和功能评估的复杂性不断增加,人工智能提供了一种可扩展的解决方案,以提高诊断准确性并简化临床工作流程。最近的进展,特别是在深度学习(DL)和卷积神经网络(CNN)方面,在解读眼底摄影、光学相干断层扫描(OCT)和磁共振成像(MRI)方面显示出显著潜力,有助于检测视神经炎(ON)、缺血性视神经病变、视乳头水肿和青光眼性视神经损伤等病症。与此同时,人工智能驱动的视野(VF)测试分析在评估疾病进展方面表现出更高的一致性,支持纵向监测。移动诊断应用程序和集成决策支持系统的开发进一步扩展了人工智能的效用,特别是在专科医生资源有限的环境中。尽管有这些有前景的创新,但关键挑战依然存在。这些挑战包括不同人群和成像平台的数据异质性、许多人工智能模型的不透明性(这限制了临床可解释性)以及缺乏标准化的监管和伦理准则。随着该领域朝着更广泛的临床应用发展,成功将取决于强有力的多中心验证研究、可解释人工智能(XAI)框架的创建以及强大治理结构的实施,以确保患者护理中的安全性、公平性和问责制。