Suppr超能文献

神经眼科学中的人工智能:视神经病变和视觉通路疾病诊断的机遇

Artificial Intelligence in Neuro-Ophthalmology: Opportunities for the Diagnosis of Optic Neuropathies and Visual Pathway Disorders.

作者信息

Karkhur Samendra, Beri Arushi, Verma Vidhya, Gupta Saroj, Singh Priti

机构信息

Ophthalmology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND.

出版信息

Cureus. 2025 Aug 15;17(8):e90142. doi: 10.7759/cureus.90142. eCollection 2025 Aug.

Abstract

Artificial intelligence (AI) is increasingly transforming the landscape of neuro-ophthalmology by enabling earlier and more precise identification of optic nerve and visual pathway disorders. With the growing complexity of multimodal diagnostic imaging and functional assessments, AI offers a scalable solution to enhance diagnostic accuracy and streamline clinical workflows. Recent advancements, particularly in deep learning (DL) and convolutional neural networks (CNNs), have shown notable potential in interpreting fundus photography, optical coherence tomography (OCT), and magnetic resonance imaging (MRI), facilitating the detection of conditions such as optic neuritis (ON), ischemic optic neuropathy, papilledema, and glaucomatous optic nerve damage. In parallel, AI-driven analysis of visual field (VF) tests has demonstrated improved consistency in assessing disease progression, supporting longitudinal monitoring. The development of mobile diagnostic applications and integrated decision-support systems further extends the utility of AI, particularly in settings with limited specialist access. Despite these promising innovations, critical challenges remain. These include data heterogeneity across populations and imaging platforms, the opaque nature of many AI models, which limits clinical interpretability, and the absence of standardized regulatory and ethical guidelines. As the field moves toward broader clinical adoption, success will depend on robust multicenter validation studies, the creation of explainable AI (XAI) frameworks, and the implementation of strong governance structures to ensure safety, fairness, and accountability in patient care.

摘要

人工智能(AI)正日益改变神经眼科的格局,它能够更早、更精确地识别视神经和视觉通路疾病。随着多模态诊断成像和功能评估的复杂性不断增加,人工智能提供了一种可扩展的解决方案,以提高诊断准确性并简化临床工作流程。最近的进展,特别是在深度学习(DL)和卷积神经网络(CNN)方面,在解读眼底摄影、光学相干断层扫描(OCT)和磁共振成像(MRI)方面显示出显著潜力,有助于检测视神经炎(ON)、缺血性视神经病变、视乳头水肿和青光眼性视神经损伤等病症。与此同时,人工智能驱动的视野(VF)测试分析在评估疾病进展方面表现出更高的一致性,支持纵向监测。移动诊断应用程序和集成决策支持系统的开发进一步扩展了人工智能的效用,特别是在专科医生资源有限的环境中。尽管有这些有前景的创新,但关键挑战依然存在。这些挑战包括不同人群和成像平台的数据异质性、许多人工智能模型的不透明性(这限制了临床可解释性)以及缺乏标准化的监管和伦理准则。随着该领域朝着更广泛的临床应用发展,成功将取决于强有力的多中心验证研究、可解释人工智能(XAI)框架的创建以及强大治理结构的实施,以确保患者护理中的安全性、公平性和问责制。

相似文献

10
The Use of AI for Phenotype-Genotype Mapping.人工智能在表型-基因型映射中的应用。
Methods Mol Biol. 2025;2952:369-410. doi: 10.1007/978-1-0716-4690-8_21.

本文引用的文献

4
Recent advances in neuro-ophthalmology.神经眼科学的最新进展。
Indian J Ophthalmol. 2024 Nov 1;72(11):1544-1559. doi: 10.4103/IJO.IJO_594_24. Epub 2024 Oct 26.
5
AI in Neuro-Ophthalmology: Current Practice and Future Opportunities.人工智能在神经眼科中的应用:现状与未来机遇。
J Neuroophthalmol. 2024 Sep 1;44(3):308-318. doi: 10.1097/WNO.0000000000002205. Epub 2024 Jul 5.
9
Through the eyes into the brain, using artificial intelligence.透过眼睛进入大脑,利用人工智能。
Ann Acad Med Singap. 2023 Feb;52(2):88-95. doi: 10.47102/annals-acadmedsg.2022369.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验