Wang Tianzhu, Yi Tianqi, Chen Tong, Khan Najeeb Ullah, Yuan Ye
Department of Neurosurgery, Shandong Public Health Clinical Center, Shandong University, Shandong, 250013, China.
Department of Neurosurgery, The Third Affiliated Hospital of Shandong First Medical University, Jinan, 250000, China.
Stem Cell Rev Rep. 2025 Sep 16. doi: 10.1007/s12015-025-10966-w.
Spinal cord injury (SCI) is a devastating neurological condition with profound motor, sensory, and autonomic consequences, affecting 10-83 individuals per million annually worldwide. This review explores the evolving SCI landscape, from acute ionic imbalance, excitotoxicity, and vascular disruption to chronic neuroinflammation and glial fibrosis, which collectively impede neural regeneration. Breakthroughs in regenerative bioengineering-such as stem cell-driven neurogenesis and CRISPR-Cas9-mediated axonal growth modulation-are converging with neurotechnological advances, including spinal neuromodulation, brain-computer interface integration, and AI-enhanced robotic locomotor systems, to redefine therapeutic frontiers. Precision medicine, guided by multi-omic biomarker stratification and patient-specific computational modeling, enables individualized intervention strategies. Despite unprecedented progress, translation to the clinic demands optimized preclinical models, harmonized trial methodologies, and ethical frameworks ensuring equitable access. Together, these innovations herald a shift from compensatory care toward structural repair and functional restoration in SCI.
脊髓损伤(SCI)是一种严重的神经系统疾病,会对运动、感觉和自主神经功能产生深远影响,全球每年每百万人口中有10至83人受其影响。本综述探讨了脊髓损伤领域的不断演变,从急性离子失衡、兴奋性毒性和血管破坏到慢性神经炎症和胶质纤维化,这些因素共同阻碍神经再生。再生生物工程的突破,如干细胞驱动的神经发生和CRISPR-Cas9介导的轴突生长调节,正与神经技术的进步相结合,包括脊髓神经调节、脑机接口整合和人工智能增强的机器人运动系统,以重新定义治疗前沿。以多组学生物标志物分层和患者特异性计算模型为指导的精准医学,能够制定个性化的干预策略。尽管取得了前所未有的进展,但要将其转化为临床应用,仍需要优化临床前模型、统一试验方法,并建立确保公平获取的伦理框架。总之,这些创新预示着脊髓损伤治疗将从补偿性护理转向结构修复和功能恢复。