Suppr超能文献

Effect of nanomaterials on cellulase enzyme produced by Aspergillus costaricensis and Trichoderma parareesei grown on rice husk.

作者信息

Elyamany Basant G, Ibrahim Ali H, Beheary Mokhtar S, Salama Abeer M

机构信息

Environmental Sciences Department, Faculty of Science, Port Said University, Port Fouad City, Egypt.

Botany and Microbiology Department, Faculty of Science, Port Said University, Port Fouad City, Egypt.

出版信息

Int Microbiol. 2025 Sep 17. doi: 10.1007/s10123-025-00714-y.

Abstract

Rapidly developing sustainability raises concerns about the role of nanoparticles in environmental applications; however, the influence of these nanoparticles on fungal cellulase activity remains unclear. The present research assessed the role of nanoparticles as magnetic iron oxide (FeO) and zinc oxide (ZnO) on cellulase activity using two selected fungal species. Two fungal species, Trichoderma parareesei and Aspergillus costaricensis, were studied. A pure fungal culture was cultivated for its cellulase production using rice husk as substrate to check the role of nanoparticles in its hydrolytic efficiency. After 4 days of incubation at a pH of 5 and a temperature of 30 °C, the two pure cultures of fungal species proved to be efficient in cellulase activity on rice husk. The cellulase production of T. parareesei using rice husk as substrate was the highest compared to the control and to A. costaricensis. It appeared that nanoparticles significantly enhanced cellulase activity of the two studied fungal species, which are effective in rice husk degradation. The optimal concentration of FeO nanoparticles was found to be 20 ppm for T. parareesei and 300 ppm for A. costaricensis, while the optimal concentration of ZnO nanoparticles was 2.5 ppm and 7.5 ppm for T. parareesei and A. costaricensis, respectively. At these concentrations, maximum cellulase activity using FeO NPs reached 0.244 FPU/mL for T. parareesei and 0.106 FPU/mL for A. costaricensis, revealing 12-fold and fivefold enhancement compared to the untreated control. Additionally, the treatment with ZnO NPs resulted in higher cellulase productivity, reaching 0.203 FPU/mL and 0.111 FPU/mL for T. parareesei and A. costaricensis, respectively.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验