Xiao Xinfeng, Li Shijun, Yu Wei
Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, Guangdong, China.
School of Computer Science, Wuhan University, Wuhan, Hubei, China.
Int J Comput Assist Radiol Surg. 2025 Sep 18. doi: 10.1007/s11548-025-03479-x.
Depression is a psychological disorder that has vital implications for society's health. So, it is important to develop a model that aids in effective and accurate depression diagnosis. This paper proposes a Dynamic Convolutional Encoder Model based on a Temporal Circular Residual Convolutional Network (DCEM-TCRCN), a novel approach for diagnosing depression using wearable Internet-of-Things sensors.
DCEM integrates Mobile Inverted Bottleneck Convolution (MBConv) blocks with Dynamic Convolution (DConv) to maximize feature extraction and allow the system to react to input changes and effectively extract depression-correlated patterns. The TCRCN model improves the performance using circular dilated convolution to address long-range temporal relations and eliminate boundary effects. Temporal attention mechanisms deal with important patterns in the data, while weight normalization, GELU activation, and dropout assure stability, regularization, and convergence.
The proposed system applies physiological information acquired from wearable sensors, including heart rate variability and electrodermal activity. Preprocessing tasks like one-hot encoding and data normalization normalize inputs to enable successful feature extraction. Dual fully connected layers perform classifications using pooled learned representations to make accurate predictions regarding depression states.
Experimental analysis on the Depression Dataset confirmed the improved performance of the DCEM-TCRCN model with an accuracy of 98.88%, precision of 97.76%, recall of 98.21%, and a Cohen-Kappa score of 97.99%. The findings confirm the efficacy, trustworthiness, and stability of the model, making it usable for real-time psychological health monitoring.
抑郁症是一种对社会健康具有重要影响的心理障碍。因此,开发一种有助于有效且准确地诊断抑郁症的模型非常重要。本文提出了一种基于时间循环残差卷积网络的动态卷积编码器模型(DCEM-TCRCN),这是一种使用可穿戴物联网传感器诊断抑郁症的新方法。
DCEM将移动倒置瓶颈卷积(MBConv)模块与动态卷积(DConv)相结合,以最大化特征提取,并使系统能够对输入变化做出反应,有效地提取与抑郁症相关的模式。TCRCN模型使用循环扩张卷积来处理长距离时间关系并消除边界效应,从而提高性能。时间注意力机制处理数据中的重要模式,而权重归一化、GELU激活和随机失活确保了稳定性、正则化和收敛性。
所提出的系统应用从可穿戴传感器获取的生理信息,包括心率变异性和皮肤电活动。诸如独热编码和数据归一化等预处理任务对输入进行归一化,以实现成功的特征提取。双全连接层使用池化后的学习表示进行分类,以对抑郁状态做出准确预测。
在抑郁症数据集上的实验分析证实了DCEM-TCRCN模型的性能有所提高,其准确率为98.88%,精确率为97.76%,召回率为98.21%,科恩卡帕系数为97.99%。研究结果证实了该模型的有效性、可靠性和稳定性,使其可用于实时心理健康监测。