Suppr超能文献

用于识别空间可变基因的计算方法的系统基准测试。

Systematic benchmarking of computational methods to identify spatially variable genes.

作者信息

Li Zhijian, M Patel Zain, Song Dongyuan, Yasa Sai Nirmayi, Cannoodt Robrecht, Yan Guanao, Li Jingyi Jessica, Pinello Luca

机构信息

Gene Regulatory Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.

出版信息

Genome Biol. 2025 Sep 18;26(1):285. doi: 10.1186/s13059-025-03731-2.

Abstract

BACKGROUND

Spatially resolved transcriptomics offers unprecedented insight by enabling the profiling of gene expression within the intact spatial context of cells, effectively adding a new and essential dimension to data interpretation. To efficiently detect spatial structure of interest, an essential step in analyzing such data involves identifying spatially variable genes (SVGs). Despite researchers having developed several computational methods to accomplish this task, the lack of a comprehensive benchmark evaluating their performance remains a considerable gap in the field.

RESULTS

Here, we systematically evaluate 14 methods using 96 spatial datasets and 6 metrics. We compare the methods regarding gene ranking and classification based on real spatial variation, statistical calibration, and computation scalability and investigate the impact of identified SVGs on downstream applications such as spatial domain detection. Finally, we explore the applicability of the methods to spatial ATAC-seq data to examine their effectiveness in identifying spatially variable peaks (SVPs). Overall, SPARK-X outperforms other benchmarked methods and Moran's I achieves a competitive performance, representing a strong baseline for future method development. Moreover, our results reveal that most methods are poorly calibrated, and more specialized algorithms are needed to identify spatially variable peaks.

CONCLUSIONS

Our benchmarking provides a detailed comparison of SVG detection methods and serves as a reference for both users and method developers.

摘要

背景

空间分辨转录组学通过在细胞完整的空间背景下对基因表达进行分析,提供了前所未有的见解,有效地为数据解读增添了一个新的重要维度。为了有效地检测感兴趣的空间结构,分析此类数据的一个关键步骤是识别空间可变基因(SVG)。尽管研究人员已经开发了几种计算方法来完成这项任务,但缺乏对其性能进行全面评估的基准测试仍是该领域的一个重大差距。

结果

在此,我们使用96个空间数据集和6个指标系统地评估了14种方法。我们基于实际空间变异、统计校准和计算可扩展性,比较了这些方法在基因排名和分类方面的情况,并研究了识别出的SVG对下游应用(如空间域检测)的影响。最后,我们探讨了这些方法在空间ATAC-seq数据中的适用性,以检验它们在识别空间可变峰(SVP)方面的有效性。总体而言,SPARK-X的性能优于其他基准测试方法,莫兰指数(Moran's I)也表现出具有竞争力的性能,为未来方法的开发提供了一个强大的基线。此外,我们的结果表明,大多数方法的校准效果不佳,需要更专门的算法来识别空间可变峰。

结论

我们的基准测试对SVG检测方法进行了详细比较,为用户和方法开发者提供了参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验