Suppr超能文献

人工智能在推进癌症治疗的治疗诊断剂量学中的作用:综述

The Role of Artificial Intelligence in Advancing Theranostics Dosimetry for Cancer Therapy: a Review.

作者信息

Woo Sang-Keun

机构信息

Division of applied RI, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, Republic of Korea.

Radiological & Medical Sciences, University of Science & Technology, Daejeon, Korea.

出版信息

Nucl Med Mol Imaging. 2025 Oct;59(5):329-341. doi: 10.1007/s13139-025-00939-9. Epub 2025 Aug 23.

Abstract

Cancer treatment has greatly benefited from advancements in radiopharmaceutical therapy, which requires precise dosimetry to enhance therapeutic efficacy and minimize risks to healthy tissues. This review investigated the role of artificial intelligence (AI) in theranostic radiopharmaceutical dosimetry, focusing on image quality enhancement, dose estimation, and organ segmentation. An in-depth review of the literature was conducted using targeted keywords searches in Google Scholar, PubMed, and Scopus. Selected studies were evaluated for their methodologies and outcomes. Traditional dosimetry techniques such as organ-level and voxel-based methods are discussed. Deep learning (DL) models based on U-Net, generative adversarial networks, and hybrid transformer networks for image synthesis and generation, image quality improvement, organ segmentation, and radiation dose estimation are reviewed and discussed. While DL shows great potential for enhancing dosimetry accuracy and efficiency, challenges such as the need for accurate dose estimation from theranostic pairs, lack of imaging data, and modeling of radionuclide decay chains must be addressed using DL models. In addition, the optimization and standardization of DL and AI models is crucial for ensuring clinical reliability and should be given high priority to support their effective integration into clinical practice.

摘要

癌症治疗从放射性药物治疗的进展中受益匪浅,这需要精确的剂量测定来提高治疗效果并将对健康组织的风险降至最低。本综述研究了人工智能(AI)在治疗诊断放射性药物剂量测定中的作用,重点关注图像质量增强、剂量估计和器官分割。通过在谷歌学术、PubMed和Scopus中使用目标关键词搜索对文献进行了深入综述。对所选研究的方法和结果进行了评估。讨论了传统的剂量测定技术,如器官水平和基于体素的方法。综述并讨论了基于U-Net、生成对抗网络和混合变压器网络的深度学习(DL)模型,用于图像合成与生成、图像质量改善、器官分割和辐射剂量估计。虽然DL在提高剂量测定的准确性和效率方面显示出巨大潜力,但使用DL模型必须解决一些挑战,如需要从治疗诊断对中进行准确的剂量估计、缺乏成像数据以及放射性核素衰变链的建模。此外,DL和AI模型的优化和标准化对于确保临床可靠性至关重要,应高度优先考虑以支持它们有效整合到临床实践中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd4/12446183/faf6493b64b1/13139_2025_939_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验