Suppr超能文献

行业对机器学习在药物和疫苗安全性方面应用的观点。

An industry perspective on the use of machine learning in drug and vaccine safety.

作者信息

Painter Jeffery L, Kassekert Raymond, Bate Andrew

机构信息

GlaxoSmithKline, Global Safety, Durham, NC, United States.

GlaxoSmithKline, Global Safety, Upper Providence, PA, United States.

出版信息

Front Drug Saf Regul. 2023 Feb 1;3:1110498. doi: 10.3389/fdsfr.2023.1110498. eCollection 2023.

Abstract

In recent years there has been growing interest in the use of machine learning across the pharmacovigilance lifecycle to enhance safety monitoring of drugs and vaccines. Here we describe the scope of industry-based research into the use of machine learning for safety purposes. We conducted an examination of the findings from a previously published systematic review; 393 papers sourced from a literature search from 2000-2021 were analyzed and attributed to either industry, academia, or regulatory authorities. Overall, 33 papers verified to be industry contributions were then assigned to one of six categories representing the most frequent PV functions (data ingestion, disease-specific studies, literature review, real world data, signal detection, and social media). RWD and social media comprised 63% (21/33) of the papers, signal detection and data ingestion comprised 18% (6/33) of the papers, while disease-specific studies and literature reviews represented 12% (4/33) and 6% (2/33) of the papers, respectively. Herein we describe the trends and opportunities observed in industry application of machine learning in pharmacovigilance, along with discussing the potential barriers. We conclude that although progress to date has been uneven, industry is very interested in applying machine learning to the pharmacovigilance lifecycle, which it is hoped may ultimately enhance patient safety.

摘要

近年来,机器学习在药物警戒生命周期中的应用越来越受到关注,以加强对药物和疫苗的安全监测。在此,我们描述了基于行业的机器学习用于安全目的的研究范围。我们对先前发表的系统评价的结果进行了审查;分析了从2000年至2021年文献检索中获取的393篇论文,并将其归为行业、学术界或监管机构。总体而言,经核实为行业贡献的33篇论文随后被归入代表最常见药物警戒功能的六个类别之一(数据摄取、疾病特异性研究、文献综述、真实世界数据、信号检测和社交媒体)。真实世界数据和社交媒体占论文的63%(21/33),信号检测和数据摄取占论文的18%(6/33),而疾病特异性研究和文献综述分别占论文的12%(4/33)和6%(2/33)。在此,我们描述了机器学习在药物警戒行业应用中观察到的趋势和机会,并讨论了潜在障碍。我们得出结论,尽管迄今为止进展不均衡,但行业对将机器学习应用于药物警戒生命周期非常感兴趣,希望这最终可能提高患者安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eda8/12443091/cc8ebf3879d6/fdsfr-03-1110498-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验