Suppr超能文献

人工智能在肥厚型心肌病中的应用:转变与漏洞

Artificial intelligence applications in hypertrophic cardiomyopathy: turns and loopholes.

作者信息

Panichella Giorgia, Garofalo Manuel, Sasso Laura, Milazzo Alessandra, Fornaro Alessandra, Pioner Josè Manuel, Bueno-Orovio Alfonso, van Gils Mark, Koivu Annariina, Mainardi Luca, Le Rolle Virginie, Agakov Felix, Pieroni Maurizio, Aalto-Setälä Katriina, Hyttinen Jari, Olivotto Iacopo, Del Franco Annamaria

机构信息

Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni, 63, Florence 50134, Italy.

Cardiomyopathy Unit, Careggi University Hospital, Largo Giovanni Alessandro Brambilla, 1, Florence 50134, Italy.

出版信息

Eur Heart J Digit Health. 2025 Jul 25;6(5):853-867. doi: 10.1093/ehjdh/ztaf086. eCollection 2025 Sep.

Abstract

Hypertrophic cardiomyopathy (HCM) is a heterogeneous disease where, despite recent advances, accurate diagnosis, risk stratification, and personalized treatment remain challenging. Artificial intelligence (AI) offers a transformative approach to HCM by enabling rapid, precise analysis of complex data. This article reviews the current and potential applications of AI in HCM. AI enhances diagnostic accuracy by analysing electrocardiograms, echocardiography, and cardiac magnetic resonance images, differentiating HCM from other forms of left ventricular hypertrophy, identifying subtle phenotypic variations, and standardizing myocardial fibrosis assessment. Multimodal AI-driven approaches improve risk stratification, therapeutic decision-making, and monitoring of both established and novel therapies, such as cardiac myosin inhibitors. Emerging AI-driven trials and digital twin platforms highlight the potential of combining data-driven and knowledge-based AI with biophysical models to simulate patient-specific disease trajectories, supporting preclinical evaluation and personalized care. As a multidisciplinary case study, the SMASH-HCM consortium is presented to illustrate how digital twin technologies and hybrid modelling can bring AI into clinical practice. Integration of genetic data further enhances AI's ability to identify at-risk individuals and predict disease progression. However, widespread AI applications raise concerns regarding data privacy, ethical considerations, and the risk of biases. Guidelines for researchers and developers-e.g. on trustworthy AI, regulatory frameworks, and transparent policies-are essential to address these possible pitfalls. As AI rapidly evolves, it has the potential to revolutionize drug discovery, disease management, and the patient journey in HCM, making interventions more precise, timely, and patient-centred.

摘要

肥厚型心肌病(HCM)是一种异质性疾病,尽管近年来取得了进展,但准确诊断、风险分层和个性化治疗仍然具有挑战性。人工智能(AI)通过对复杂数据进行快速、精确的分析,为HCM提供了一种变革性的方法。本文综述了AI在HCM中的当前和潜在应用。AI通过分析心电图、超声心动图和心脏磁共振图像,提高诊断准确性,将HCM与其他形式的左心室肥厚区分开来,识别细微的表型变异,并使心肌纤维化评估标准化。多模态AI驱动的方法改善了风险分层、治疗决策以及对既定疗法和新疗法(如心肌肌球蛋白抑制剂)的监测。新兴的AI驱动试验和数字孪生平台突出了将数据驱动和基于知识的AI与生物物理模型相结合以模拟患者特异性疾病轨迹的潜力,支持临床前评估和个性化医疗。作为一个多学科案例研究,介绍了SMASH-HCM联盟,以说明数字孪生技术和混合建模如何将AI引入临床实践。遗传数据的整合进一步增强了AI识别高危个体和预测疾病进展的能力。然而,AI的广泛应用引发了对数据隐私、伦理考量和偏差风险的担忧。针对研究人员和开发者的指南,例如关于可信AI、监管框架和透明政策的指南,对于解决这些可能的陷阱至关重要。随着AI的迅速发展,它有可能彻底改变HCM的药物发现、疾病管理和患者就医过程,使干预更加精确、及时且以患者为中心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4c4/12450525/2cc92ee9cbe1/ztaf086_ga.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验