Chávez-Santiago Joaquín O, López-Ramírez Luz A, Pérez-García Luis A, Martínez-Duncker Iván, Franco Bernardo, Padilla-Guerrero Israel E, Olmedo-Monfil Vianey, Gutiérrez-Corona J Félix, Niño-Vega Gustavo A, Ramírez-Prado Jorge H, Mora-Montes Héctor M
Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Guanajuato, Mexico.
Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fracc. Rafael Curiel, Ciudad Valles 79060, San Luis Potosí, Mexico.
J Fungi (Basel). 2025 Jul 15;11(7):524. doi: 10.3390/jof11070524.
Rhamnose is a natural sugar found in glycoproteins and structural polysaccharides of plants, fungi, and bacteria. Its incorporation into glycoconjugates is mediated by rhamnosyltransferases (RHTs), key enzymes for biomolecular stability and function. While rhamnose biosynthesis has been studied in certain fungal genera, the evolutionary history and distribution of RHTs across the fungal kingdom remain largely unknown. In this study, 351 fungal species were found to encode putative RHTs. Phylogenetic and structural analyses revealed conserved patterns and similarities with previously characterized RHTs. Molecular docking predicted a high affinity of these proteins for UDP-L-rhamnose, and in silico mutagenesis identified key residues potentially involved in substrate binding. Carbohydrate profiling confirmed the presence of rhamnose in the cell walls of multiple fungi, including , , , and species. Enzymatic assays further supported rhamnose transfer activity. These findings provide the first comprehensive in silico characterization of fungal RHTs, uncovering conserved sequence motifs despite overall diversity, which may be linked to functional adaptation in different fungal lineages.
鼠李糖是一种天然糖类,存在于植物、真菌和细菌的糖蛋白及结构多糖中。它掺入糖缀合物是由鼠李糖基转移酶(RHTs)介导的,RHTs是生物分子稳定性和功能的关键酶。虽然已在某些真菌属中研究了鼠李糖的生物合成,但RHTs在整个真菌界的进化历史和分布情况仍 largely unknown。在本研究中,发现351种真菌物种编码假定的RHTs。系统发育和结构分析揭示了与先前表征的RHTs的保守模式和相似性。分子对接预测这些蛋白质对UDP-L-鼠李糖具有高亲和力,并且计算机诱变鉴定了可能参与底物结合的关键残基。碳水化合物谱分析证实了多种真菌细胞壁中存在鼠李糖,包括 、 、 和 物种。酶活性测定进一步支持了鼠李糖转移活性。这些发现首次对真菌RHTs进行了全面的计算机表征,揭示了尽管总体存在多样性但仍保守的序列基序,这可能与不同真菌谱系中的功能适应性有关。