Rodriguez-Sanchez Julia, Hauke Daniel J, Pinotsis Dimitris, Berndt Lioba C S, Oloye Hope, Nicholas Spero C, Hamilton Holly K, Roach Brian J, Bachman Peter M, Belger Aysenil, Carrión Ricardo E, Duncan Erica, Johannesen Jason K, Light Gregory A, Niznikiewicz Margaret A, Friston Karl J, Addington Jean, Bearden Carrie E, Cadenhead Kristin S, Perkins Diana O, Walker Elaine F, Woods Scott W, Cannon Tyrone D, Adams Rick A, Mathalon Daniel H
Hawkes Institute, University College London, UK.
Department of Psychology & Neuroscience, City St George's, University of London, UK.
medRxiv. 2025 Sep 18:2025.09.16.25335778. doi: 10.1101/2025.09.16.25335778.
Reduced mismatch negativity (MMN) and P300 event-related potential (ERP) components are widely replicated in schizophrenia and are also observed in individuals at clinical high risk for psychosis (CHR-P) who subsequently convert to psychosis. It is unknown whether they reflect changes in excitatory and/or inhibitory synaptic function, both implicated in schizophrenia and considered potential drug targets.
We analyzed baseline MMN and P300 ERPs from the NAPLS2 study, asking whether altered synaptic excitation, inhibition, or both could explain amplitude reductions in CHR-P (n=583). CHR-P participants who converted to psychosis (CHR-Converters; n=77) or remitted by 24-month follow-up (CHR-Remitters; n=94) were compared on MMN evoked by pitch+duration double-deviant tones and P300 elicited by target tones from passive and active auditory oddball paradigms, respectively. Biophysical modeling was used to infer (excitatory) pyramidal cell and (inhibitory) interneuron function from both MMN and P300 ERPs.
MMN and P300 amplitude reductions in future CHR-Converters relative to CHR-Remitters were best explained by reduced pyramidal cell excitability (posterior probability P>.95 of a group-by-condition interaction effect). In simulations, reduced pyramidal cell excitability suppressed deviant and target ERPs. Within CHR-Converters, but not CHR-Remitters, more severe positive symptoms were associated with disinhibition of pyramidal cells (P>.99).
Results mirror previous findings in schizophrenia and suggest that reduced pyramidal cell excitability is present at baseline in future CHR-Converters, supporting the hypothesis that hypofunction of pyramidal cells is a primary pathology in schizophrenia, rather than a consequence of chronic illness. Positive symptoms among CHR-Converters may reflect compensatory downregulation of inhibition.
失匹配负波(MMN)和P300事件相关电位(ERP)成分在精神分裂症中被广泛重复观察到,并且在随后发展为精神病的临床高危个体(CHR-P)中也有发现。目前尚不清楚它们是否反映了兴奋性和/或抑制性突触功能的变化,这两种功能均与精神分裂症有关且被认为是潜在的药物靶点。
我们分析了NAPLS2研究中的基线MMN和P300 ERP,探究突触兴奋、抑制或两者的改变是否能解释CHR-P组(n = 583)中波幅降低的情况。分别比较了转化为精神病的CHR-P参与者(CHR-Converters;n = 77)和在24个月随访时缓解的参与者(CHR-Remitters;n = 94),通过音高+时长双偏差音调诱发的MMN以及分别由被动和主动听觉oddball范式中的目标音调诱发的P300进行比较。使用生物物理模型从MMN和P300 ERP中推断(兴奋性)锥体细胞和(抑制性)中间神经元的功能。
相对于CHR-Remitters,未来CHR-Converters中MMN和P300波幅降低最好由锥体细胞兴奋性降低来解释(组间条件交互效应的后验概率P>.95)。在模拟中,锥体细胞兴奋性降低会抑制偏差和目标ERP。在CHR-Converters组内,但不在CHR-Remitters组内,更严重的阳性症状与锥体细胞去抑制有关(P>.99)。
结果与先前在精神分裂症中的发现一致,表明未来CHR-Converters在基线时存在锥体细胞兴奋性降低,支持锥体细胞功能低下是精神分裂症的主要病理而非慢性疾病后果的假设。CHR-Converters中的阳性症状可能反映了抑制的代偿性下调。