Chen Junjie, He Changxiang, Peng Xudong, Li Jin, Xu Xiaosa, Zhou Yin, Shen Jiadong, Sun Jing, Li Yiju, Zhao Tianshou
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China.
Nat Commun. 2025 Sep 26;16(1):8494. doi: 10.1038/s41467-025-63439-6.
Developing safe and high-voltage solid-state polymer electrolytes for high-specific-energy lithium metal batteries holds great promise. However, low ionic conductivity, limited Li transference number, narrow voltage window, and high flammability greatly hinder their practical applications. Herein, we propose a puzzle-like molecular assembly strategy to construct a solid-state polymer electrolyte via in situ polymerization. The triallyl phosphate and 2,2,3,3,4,4,4-heptafluorobutyl methacrylate segments are spliced into the vinyl ethylene carbonate matrix to enhance anion affinity and promote lithium salt dissociation, resulting in a high ionic conductivity of 0.432 mS cm and a Li transference number of 0.70 at 25 °C. Meanwhile, the polymer electrolyte exhibits a high oxidation voltage of 5.15 V, enabled by its intrinsic high-voltage tolerance and the formation of a robust inorganic-rich interphase. As a result, the Li||LiNiCoMnO cell maintains stable performance for 300 cycles and reliably cycles even with an application-oriented mass loading of 15.8 mg cm. The 2.6-Ah Li||LiNiCoMnO pouch cell reaches a high specific energy of 349 Wh kg. Furthermore, the developed polymer electrolyte displays superior nonflammability and the Li||LiFePO cell exhibits stable cycling for over 120 cycles at 100 °C. Both accelerating rate calorimetry and nail penetration tests verify the high safety of the pouch cells using the designed polymer electrolyte, showing the potential for practical applications.
开发用于高比能锂金属电池的安全且高压的固态聚合物电解质具有广阔前景。然而,低离子电导率、有限的锂迁移数、窄电压窗口和高易燃性极大地阻碍了它们的实际应用。在此,我们提出一种拼图状分子组装策略,通过原位聚合构建固态聚合物电解质。将磷酸三烯丙酯和甲基丙烯酸2,2,3,3,4,4,4 - 七氟丁酯链段拼接至碳酸亚乙烯酯乙烯基基体中,以增强阴离子亲和力并促进锂盐解离,在25℃时实现了0.432 mS cm的高离子电导率和0.70的锂迁移数。同时,该聚合物电解质具有5.15 V的高氧化电压,这得益于其固有的高电压耐受性以及形成了坚固的富无机相间层。结果,Li||LiNiCoMnO电池在300次循环中保持稳定性能,即使在15.8 mg cm的面向应用的质量负载下也能可靠循环。2.6 Ah的Li||LiNiCoMnO软包电池达到了349 Wh kg的高比能。此外,所开发的聚合物电解质具有优异的不可燃性,Li||LiFePO电池在100℃下能稳定循环超过120次。加速量热法和针刺试验均验证了使用所设计聚合物电解质的软包电池具有高安全性,显示出实际应用的潜力。