Ye Guo, Zhu Lujun, Ma Yue, He Mengxue, Zheng Chenxi, Shen Kaier, Hong Xufeng, Xiao Zhitong, Jia Yongfeng, Gao Peng, Pang Quanquan
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China.
International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China.
J Am Chem Soc. 2024 Oct 9;146(40):27668-27678. doi: 10.1021/jacs.4c09062. Epub 2024 Sep 26.
Solid polymer electrolytes (SPEs) with high ion conductivity, high Li transference number, and a wide electrochemical window are promising for the next-generation high-energy Li metal batteries (LMBs). Here we describe an enthalpy-entropy manipulation strategy enabling a class of polycarbonate-based copolymeric electrolytes (PCCEs) with regulated cation/anion solvation via a molecular design of the polymer backbone. By integrating a weakly solvating linear carbonate with another strongly solvating cyclic carbonate segment in the polymer backbone, the cation-dipole coordination for Li ions (with two types of carbonyl groups) is weakened (low enthalpy penalty) and nondirectional (high entropy penalty), which enables a weak solvation and rapid diffusion of Li. We further introduce a bis-acrylamide-based cross-linking segment which, other than imparting high mechanical strength, exhibits dihydrogen bonding with the difluoro(oxalate) borate anions, which is strong (high enthalpy penalty) and directional (low entropy penalty), thus restricting the migration of anions. As a result, the PCCE delivers a high ionic conductivity of 0.66 mS cm with a high Li transference number (0.76) at 25 °C, as well as high oxidation stability. By an in situ polymerization approach, the PCCE enables LMBs using high-nikel LiNiCoMnO cathodes with a high capacity retention of 82.2% over 800 cycles with a cutoff voltage of 4.5 V and further LMBs using aggressive LiNiMnO cathodes with a 96.4% capacity retention over 300 cycles with a cutoff voltage of 5.0 V. The described enthalpy-entropy manipulation approach offers a unique perspective for the molecular design of high-performance SPEs for high-energy Li metal batteries.
具有高离子电导率、高锂迁移数和宽电化学窗口的固态聚合物电解质(SPEs)对于下一代高能锂金属电池(LMBs)具有广阔前景。在此,我们描述了一种焓-熵调控策略,通过聚合物主链的分子设计,能够实现一类基于聚碳酸酯的共聚电解质(PCCEs),其阳离子/阴离子溶剂化作用得到调控。通过在聚合物主链中整合弱溶剂化的线性碳酸酯与另一种强溶剂化的环状碳酸酯链段,锂离子(与两种羰基基团)的阳离子-偶极配位作用被削弱(低焓罚)且无方向性(高熵罚),这使得锂的溶剂化作用较弱且扩散迅速。我们进一步引入基于双丙烯酰胺的交联链段,其除了赋予高机械强度外,还与二氟(草酸根)硼酸根阴离子形成双氢键,这种双氢键很强(高焓罚)且具有方向性(低熵罚),从而限制了阴离子的迁移。结果,PCCE在25℃时具有0.66 mS cm的高离子电导率和高锂迁移数(0.76),以及高氧化稳定性。通过原位聚合法,PCCE能够使使用高镍LiNiCoMnO阴极的LMBs在4.5 V截止电压下经过800次循环后仍保持82.2%的高容量保持率,并且能够使使用活性LiNiMnO阴极的LMBs在5.0 V截止电压下经过300次循环后保持96.4%的容量保持率。所描述的焓-熵调控方法为高能锂金属电池高性能SPEs的分子设计提供了独特的视角。