Pagnotta Mario A
Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, snc, 01100 Viterbo, Italy.
Int J Mol Sci. 2025 Sep 19;26(18):9164. doi: 10.3390/ijms26189164.
The document is an updated review, starting from the Special Issue "Molecular Breeding for Abiotic Stress Tolerance in Crops" published in the Int. J. Mol. Sci. It reviews molecular breeding strategies to enhance abiotic stress tolerance in crops, addressing challenges like drought, salinity, temperature extremes, and waterlogging, which threaten global food security. Climate change intensifies these stresses, making it critical to develop resilient crop varieties. Plants adapt to stress through mechanisms such as hormonal regulation (e.g., ABA, ethylene), antioxidant defense (e.g., SOD, CAT), osmotic adjustment (e.g., proline accumulation), and gene expression regulation via transcription factors like MYB and WRKY. Advanced tools, such as CRISPR/Cas9 genome editing, enable precise modifications of stress-related genes, improving tolerance without compromising yield. Examples include rice (, ) and wheat (, ). Epigenetic regulation, including DNA methylation and histone modifications, also plays a role in stress adaptation. Specific studies focused on polyamine seed priming for improved germination and stress resistance, cadmium detoxification mechanisms, and genome-wide association studies (GWAS) to identify genetic markers for salt tolerance and yield. Research on salinity tolerance in wheat emphasizes sodium exclusion and tissue tolerance mechanisms. Future perspectives focus on genetic engineering, molecular markers, epigenetic studies, and functional validation to address environmental stress challenges, including the use of AI and machine learning to manage the large amount of data. The review underscores the importance of translating molecular findings into practical applications to ensure sustainable crop production under changing climates.
该文献是一篇更新的综述,始于发表在《国际分子科学杂志》上的“作物非生物胁迫耐受性的分子育种”特刊。它综述了增强作物非生物胁迫耐受性的分子育种策略,探讨了干旱、盐碱化、极端温度和涝渍等威胁全球粮食安全的挑战。气候变化加剧了这些胁迫,因此培育抗逆性作物品种至关重要。植物通过激素调节(如脱落酸、乙烯)、抗氧化防御(如超氧化物歧化酶、过氧化氢酶)、渗透调节(如脯氨酸积累)以及通过MYB和WRKY等转录因子进行基因表达调控等机制来适应胁迫。先进的工具,如CRISPR/Cas9基因组编辑,能够精确修饰与胁迫相关的基因,在不影响产量的情况下提高耐受性。实例包括水稻(,)和小麦(,)。表观遗传调控,包括DNA甲基化和组蛋白修饰,也在胁迫适应中发挥作用。具体研究聚焦于多胺种子引发以改善发芽和抗逆性、镉解毒机制以及全基因组关联研究(GWAS)以鉴定耐盐性和产量的遗传标记。小麦耐盐性研究强调钠排斥和组织耐受机制。未来展望聚焦于基因工程、分子标记、表观遗传研究和功能验证,以应对环境胁迫挑战,包括利用人工智能和机器学习来管理大量数据。该综述强调了将分子研究成果转化为实际应用以确保在气候变化条件下实现可持续作物生产的重要性。