Idzikowska Katarzyna, Gątarek Paulina, Gajda Anna, Safiński Piotr, Przyslo Lukasz, Kałużna-Czaplińska Joanna
Institute of General and Environmental Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland.
Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland.
Nutrients. 2025 Sep 16;17(18):2969. doi: 10.3390/nu17182969.
The ketogenic diet (KD), a high-fat and low-carbohydrate dietary approach, has been used therapeutically in drug-resistant epilepsy and other neurological and metabolic disorders. Recent interest has shifted toward understanding its broader metabolic effects through metabolomics. This review aims to summarize current knowledge on the biochemical mechanisms and therapeutic implications of the KD, with a particular focus on metabolomic profiling and neurological health.
This narrative review synthesizes findings from the last five years of metabolomic studies investigating the biochemical consequences of the KD and its variants, including the classical KD, modified Atkins diet (MAD), medium-chain triglyceride diet (MCT), and low glycemic index treatment (LGIT). The review integrates data on analytical techniques, such as liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), and evaluates alterations in key metabolic pathways.
The KD significantly modulates energy metabolism, shifting adenosine triphosphate (ATP) production from glycolysis to fatty acid oxidation and ketone body utilization. It affects mitochondrial function, one-carbon metabolism, redox balance, neurotransmitter regulation, and gut-brain axis signaling. Metabolomic profiling has identified β-hydroxybutyrate (βHB) as a key regulatory metabolite influencing mitochondrial respiration. Long-term KD use may impact renal and hepatic function, necessitating clinical caution and individualized nutritional monitoring.
Metabolomic analysis provides critical insights into the multifaceted effects of the KD, supporting its role as a targeted metabolic therapy in neurological diseases. However, potential risks linked to prolonged ketosis warrant further investigation. Future studies should focus on personalized applications and long-term safety profiles of KD variants across patient populations.
生酮饮食(KD)是一种高脂肪、低碳水化合物的饮食方法,已被用于治疗耐药性癫痫以及其他神经和代谢紊乱疾病。最近,人们的兴趣已转向通过代谢组学来了解其更广泛的代谢作用。本综述旨在总结关于KD的生化机制和治疗意义的现有知识,特别关注代谢组学分析和神经健康。
本叙述性综述综合了过去五年代谢组学研究的结果,这些研究调查了KD及其变体(包括经典KD、改良阿特金斯饮食(MAD)、中链甘油三酯饮食(MCT)和低血糖指数治疗(LGIT))的生化后果。该综述整合了有关分析技术(如液相色谱 - 质谱联用(LC - MS)和气相色谱 - 质谱联用(GC - MS))的数据,并评估关键代谢途径的变化。
KD显著调节能量代谢,将三磷酸腺苷(ATP)的产生从糖酵解转变为脂肪酸氧化和酮体利用。它影响线粒体功能、一碳代谢、氧化还原平衡、神经递质调节和肠 - 脑轴信号传导。代谢组学分析已确定β - 羟基丁酸(βHB)是影响线粒体呼吸的关键调节代谢物。长期使用KD可能会影响肾功能和肝功能,因此临床需要谨慎并进行个体化营养监测。
代谢组学分析为KD的多方面作用提供了关键见解,支持其作为神经疾病靶向代谢疗法的作用。然而,与长期酮症相关的潜在风险值得进一步研究。未来的研究应关注KD变体在不同患者群体中的个性化应用和长期安全性。