Ononamadu Chimaobi J, Ahmed Ziyad Ben, Seidel Veronique
Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
Natural Product Research Group, Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil 713105, Kano State, Nigeria.
Plants (Basel). 2025 Sep 10;14(18):2828. doi: 10.3390/plants14182828.
Network pharmacology, molecular docking, and molecular dynamics (MD) studies were used to investigate the molecular targets and mechanisms of action of phytoconstituents in type-2 diabetes mellitus (T2DM). SciFinder was used to retrieve previously known phytoconstituents from aerial parts. Targets related to these compounds were predicted using the Swiss TargetPrediction, SEA (similarity ensemble approach) and BindingDB databases, and were intersected with T2DM-relevant targets from public databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene ontology/KEGG pathway analysis was performed using DAVID and SHINEGO 0.77. Molecular docking used the MOE suite. MD simulations were conducted for 100 ns using GROMACS 2023 with a CHARMM36 force field. A total of 17 phytoconstituents and 154 targets associated with T2DM were identified. The protein-protein interaction (PPI) and target-pathway (TP) network analysis identified key hub genes, including EGFR, SRC, AKT1, TNF, PPARG, PIK3R1, RELA, INSR, GSK3B, PIK3CG, FYN, PTBIN, and PPARA, with critical roles in insulin resistance and T2DM-relevant pathways. The pathway enrichment analysis highlighted notable involvement in insulin signaling, inflammation, and diabetic complications. The compound-target (CT) network predicted quercetin, luteolin, ursolic acid, isoquercitrin, 2α-hydroxy-ursolic acid, and oleanolic acid to be key bioactive compounds. Molecular docking, followed by MD studies, identified that isoquercitrin showed most energetically favorable and stable complexes with three targets, namely EGFR, PPARα, and AKT1. These findings enhance our understanding of the antidiabetic potential of and underscore the need for further studies on its phytoconstituents, such as isoquercitrin, in search for new antidiabetic agents.
采用网络药理学、分子对接和分子动力学(MD)研究方法,探究植物成分在2型糖尿病(T2DM)中的分子靶点及作用机制。利用SciFinder从地上部分检索先前已知的植物成分。使用瑞士靶点预测、SEA(相似性整合方法)和BindingDB数据库预测与这些化合物相关的靶点,并与来自公共数据库的T2DM相关靶点进行交集分析。使用STRING在线工具和Cytoscape(v.3.9.1)软件构建网络。使用DAVID和SHINEGO 0.77进行基因本体论/KEGG通路分析。分子对接使用MOE套件。使用GROMACS 2023和CHARMM36力场进行100 ns的MD模拟。共鉴定出17种与T2DM相关的植物成分和154个靶点。蛋白质-蛋白质相互作用(PPI)和靶点-通路(TP)网络分析确定了关键的枢纽基因,包括EGFR、SRC、AKT1、TNF、PPARG、PIK3R1、RELA、INSR、GSK3B、PIK3CG、FYN、PTBIN和PPARA,它们在胰岛素抵抗和T2DM相关通路中起关键作用。通路富集分析突出了其在胰岛素信号传导、炎症和糖尿病并发症中的显著参与。化合物-靶点(CT)网络预测槲皮素、木犀草素、熊果酸、异槲皮苷、2α-羟基熊果酸和齐墩果酸为关键生物活性化合物。分子对接及随后的MD研究表明,异槲皮苷与三个靶点(即EGFR、PPARα和AKT1)形成了能量上最有利且稳定的复合物。这些发现增进了我们对其抗糖尿病潜力的理解,并强调需要对其植物成分(如异槲皮苷)进行进一步研究,以寻找新的抗糖尿病药物。