Shah Vaibhav R, Dixon Philippe C
Institute of Biomedical Engineering, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.
Centre de Recherche Azrieli du CHU Sainte-Justine (CRCHUSJ), Montreal, QC H3T 1C5, Canada.
Sensors (Basel). 2025 Sep 14;25(18):5728. doi: 10.3390/s25185728.
As advancements in inertial measurement units (IMUs) for motion analysis progress, the inability to directly apply decades of research-based optical motion capture (OMC) methodologies presents a significant challenge. This study aims to bridge this gap by proposing an innovative deep learning approach to predict marker positions from IMU data, allowing traditional OMC-based calculations to estimate joint kinematics. Eighteen participants walked on a treadmill with seven IMUs and retroreflective markers. Trials were divided into normalized gait cycles (101 frames), and an autoencoder network with a custom Biomech loss function was used to predict 16 marker positions from IMU data. The model was validated using the leave-one-subject-out method and assessed using root mean squared error (RMSE). Joint angles in the sagittal plane were calculated using OMC methods, and RMSE was computed with and without alignment using dynamic time warping (DTW). The models were also tested on external datasets. Marker predictions achieved RMSE values of 2-4 cm, enabling joint angle predictions with 4-7° RMSE without alignment and 2-4° RMSE after DTW for sagittal plane joint angles (ankle, knee, hip). Validation using separate and open-source datasets confirmed the model's generalizability, with similar RMSE values across datasets (4-7° RMSE without DTW and 2-4° with DTW). This study demonstrates the feasibility of applying conventional biomechanical models to IMUs, enabling accurate movement analysis and visualization outside controlled environments. This approach to predicting marker positions helps to bridge the gap between IMUs and OMC systems, enabling decades of research-based biomechanical methodologies to be applied to IMU data.
随着用于运动分析的惯性测量单元(IMU)技术不断进步,无法直接应用基于数十年研究的光学运动捕捉(OMC)方法带来了重大挑战。本研究旨在通过提出一种创新的深度学习方法来弥合这一差距,该方法可根据IMU数据预测标记位置,从而使基于传统OMC的计算能够估计关节运动学。18名参与者在跑步机上行走,身上佩戴7个IMU和反光标记。试验被划分为标准化步态周期(101帧),并使用带有自定义生物力学损失函数的自动编码器网络根据IMU数据预测16个标记位置。该模型采用留一法进行验证,并使用均方根误差(RMSE)进行评估。矢状面的关节角度采用OMC方法计算,RMSE在使用和不使用动态时间规整(DTW)进行对齐的情况下进行计算。这些模型还在外部数据集上进行了测试。标记预测的RMSE值达到2 - 4厘米,能够在不进行对齐的情况下预测矢状面关节角度(脚踝、膝盖、髋关节)的RMSE为4 - 7°,在使用DTW后RMSE为2 - 4°。使用单独的开源数据集进行验证证实了该模型的通用性,各数据集的RMSE值相似(不使用DTW时RMSE为4 - 7°,使用DTW时为2 - 4°)。本研究证明了将传统生物力学模型应用于IMU的可行性,能够在不受控制的环境中进行准确的运动分析和可视化。这种预测标记位置的方法有助于弥合IMU与OMC系统之间的差距,使基于数十年研究的生物力学方法能够应用于IMU数据。