Suppr超能文献

镍/石墨相氮化碳催化剂上的光热一氧化碳加氢反应:合成方法对结构、活性及反应机理的影响

Photothermal CO Hydrogenation over Ni/g‑CN Catalysts: Effect of Synthesis Methods on Structure, Activity and Mechanism.

作者信息

Shi Qiyuan, Liu Yuling, Wang Zhuoran, Wang Rong, Shu Hao, Wang Hongli

机构信息

State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an 710048, China.

Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China.

出版信息

ACS Omega. 2025 Sep 9;10(37):43230-43242. doi: 10.1021/acsomega.5c06990. eCollection 2025 Sep 23.

Abstract

The intensification of global climate change by CO emissions has led to increased research focus on reducing emissions and utilizing resources. Photothermal catalysis, combining photocatalytic and thermal catalytic advantages, holds promise for efficient CO conversion. g-CN, with its superior band structure and visible light responsiveness, is commonly employed in catalytic material development. Nickel, a cost-effective transition metal, exhibits strong CO adsorption and H activation capabilities, making it highly active in photothermal catalytic CO reduction. However, the structural properties of g-CN are sensitive to metal loading, with different preparation methods significantly impacting Ni particle dispersion, the metal-support interface structure, and active site exposure, thereby influencing the overall catalytic performance of g-CN. Based on this, Ni/g-CN catalysts were synthesized using co-deposition, solid-state impregnation, and the Co-pyrolysis method, where g-CN served as the carrier and Ni as the active core component. The catalysts underwent comprehensive physical and chemical characterization through SEM-EDS, TEM, XRD, FT-IR, BET, CO-TPD, H-TPR, XPS, UV-vis DRS, and photoelectrochemical analyses. The catalytic activity was assessed in the photothermal catalytic CO hydrogenation reaction, and the reaction mechanism was elucidated through in situ DRIFTS analysis. The results demonstrate that the preparation method significantly impacts the phase structure and surface properties of the catalysts, leading to performance variations. Notably, the Ni/g-CN-CD catalyst synthesized via the co-deposition method exhibits a higher specific surface area, a richer pore structure, a weaker metal-support interaction, a broader visible-light absorption range, and enhanced CO adsorption and reduction capabilities. Photoelectrochemical tests confirmed its more efficient photogenerated carrier separation and electron transport abilities. Under photothermal coupling conditions at 300 °C, the catalyst achieved a CO yield of 15937.2 μmol·g·h and a CO selectivity of 84%. Mechanistic investigations reveal that CO is hydrogenated on the catalyst surface, forming the COOH* intermediate, which then decomposes into CO and HO, with a portion of the CO further hydrogenated to CH. This study provides valuable insights for optimizing the synthesis of g-CN-based supported metal catalysts and their application in photothermal catalytic CO reduction.

摘要

二氧化碳排放导致全球气候变化加剧,这使得人们更加关注减排和资源利用。光热催化结合了光催化和热催化的优点,有望实现高效的二氧化碳转化。具有优异能带结构和可见光响应性的石墨相氮化碳(g-CN)常用于催化材料的开发。镍作为一种经济高效的过渡金属,具有很强的一氧化碳吸附和氢活化能力,在光热催化二氧化碳还原中表现出高活性。然而,g-CN的结构性质对金属负载量敏感,不同的制备方法会显著影响镍颗粒的分散性、金属-载体界面结构和活性位点的暴露情况,从而影响g-CN的整体催化性能。基于此,采用共沉积法、固态浸渍法和共热解法合成了以g-CN为载体、镍为活性核心组分的Ni/g-CN催化剂。通过扫描电子显微镜-能谱仪(SEM-EDS)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、比表面积分析仪(BET)、程序升温脱附仪(CO-TPD)、程序升温还原仪(H-TPR)、X射线光电子能谱仪(XPS)、紫外-可见漫反射光谱仪(UV-vis DRS)和光电化学分析等手段对催化剂进行了全面的物理和化学表征。在光热催化二氧化碳加氢反应中评估了催化剂的活性,并通过原位漫反射红外傅里叶变换光谱(in situ DRIFTS)分析阐明了反应机理。结果表明,制备方法对催化剂的相结构和表面性质有显著影响,导致性能差异。值得注意的是,通过共沉积法合成的Ni/g-CN-CD催化剂具有更高的比表面积、更丰富的孔结构、较弱的金属-载体相互作用、更宽的可见光吸收范围以及增强的一氧化碳吸附和还原能力。光电化学测试证实了其更高效的光生载流子分离和电子传输能力。在300℃的光热耦合条件下,该催化剂的一氧化碳产率达到15937.2 μmol·g·h,一氧化碳选择性为84%。机理研究表明,一氧化碳在催化剂表面加氢生成COOH*中间体,然后分解为一氧化碳和羟基,一部分一氧化碳进一步加氢生成甲烷。本研究为优化基于g-CN的负载型金属催化剂的合成及其在光热催化二氧化碳还原中的应用提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3347/12461334/c09b6accd79b/ao5c06990_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验