Wang Weiyong, Ruan Yong, Ting Gong
Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou, China.
Biol Res. 2025 Nov 12;58(1):68. doi: 10.1186/s40659-025-00652-z.
Methionine serves as an essential amino acid regulating de novo protein synthesis and redox homeostasis. Previous studies have established adverse impacts of methionine restriction and deprivation on semen quality, but effects on early spermatogenesis remain poorly characterized. In this study, a methionine dietary model (0.86%, 0.17%, 0%) was used to investigate the role of methionine in early spermatogenesis. The results indicated that methionine deprivation caused spermatogenesis defects by inhibiting spermatogonial proliferation and increasing apoptosis. Further studies showed that methionine deprivation downregulated mitochondrial function-related genes (Gpx4, Fis1 and Gstm1), but upregulated ISR- (Atf4, Chac1 and Ddit3) and DNA damage response-related genes (Cdkn1a, Chek2 and Atm). Meanwhile, methionine deprivation caused mitochondrial dysfunction characterized by mitochondrial membrane potential depolarization, ROS accumulation, and MitoSOX accumulation. Methionine deprivation also caused an obvious increase in DNA damage response proteins (γH2AX, p-CHK2 and p-p53) and pro-apoptotic proteins (PUMA, BAX and c-PARP1), but suppressed anti-apoptotic protein BCL2. Furthermore, NAC effectively reversed the proliferation deficiency of GC-1 cells caused by methionine deprivation. Collectively, these findings suggest that methionine deprivation triggers ISR activation, which subsequently induces spermatogonial apoptosis via oxidative stress and the CHK2-p53/p21 signaling cascade. This study highlights the critical role of methionine in early spermatogenesis, provides mechanistic insights for optimizing dietary interventions and addresses related reproductive disorders.
蛋氨酸是一种必需氨基酸,可调节从头蛋白质合成和氧化还原稳态。先前的研究已经证实蛋氨酸限制和缺乏对精液质量有不利影响,但对早期精子发生的影响仍不清楚。在本研究中,使用蛋氨酸饮食模型(0.86%、0.17%、0%)来研究蛋氨酸在早期精子发生中的作用。结果表明,蛋氨酸缺乏通过抑制精原细胞增殖和增加细胞凋亡导致精子发生缺陷。进一步研究表明,蛋氨酸缺乏下调了线粒体功能相关基因(Gpx4、Fis1和Gstm1),但上调了综合应激反应(ISR)相关基因(Atf4、Chac1和Ddit3)以及DNA损伤反应相关基因(Cdkn1a、Chek2和Atm)。同时,蛋氨酸缺乏导致线粒体功能障碍,其特征为线粒体膜电位去极化、活性氧(ROS)积累和MitoSOX积累。蛋氨酸缺乏还导致DNA损伤反应蛋白(γH2AX、p-CHK2和p-p53)和促凋亡蛋白(PUMA、BAX和c-PARP1)明显增加,但抑制了抗凋亡蛋白BCL2。此外,NAC有效地逆转了蛋氨酸缺乏导致的GC-1细胞增殖缺陷。总的来说,这些发现表明蛋氨酸缺乏触发了ISR激活,随后通过氧化应激和CHK2-p53/p21信号级联诱导精原细胞凋亡。本研究突出了蛋氨酸在早期精子发生中的关键作用,为优化饮食干预提供了机制性见解,并解决了相关的生殖障碍问题。