Suppr超能文献

背景光照对红锥和绿锥光反应的影响。

The effects of background illumination on the photoresponses of red and green cones.

作者信息

Normann R A, Perlman I

出版信息

J Physiol. 1979 Jan;286:491-507. doi: 10.1113/jphysiol.1979.sp012633.

Abstract
  1. The photoresponses of light- and dark-adapted red and green cone photoreceptors were recorded intracellularly in the retina of the turtle, Pseduemys scripta elegans. Background illumination produced similar effects on both types of cones. 2. In response to the onset of a prolonged, steady background illumination the cone initially hyperpolarized to a peak which then sagged back to a steady-state polarization that was typically about one half the initial peak amplitude. This sag was observed for all backgrounds studied (dim as well as bright). 3. A resensitization was observed concomitantly with this sag; both the maximum increment and decrement responses grew in amplitude as light-adaptation proceeded. After about 2--3 min of background illumination, the amplitudes of these responses stabilized. 4. The dark-adapted cone produced graded responses to test pulses over a range of intensities spanning about 3.5 log units. The amplitudes of these responses were well fit by the relationship V = I.Vm/(I + sigma). 5. After 2--3 min of background illumination, 500 msec test pulses either brighter or dimmer than the background intensity were substituted for the background. The light-adapted intensity-response curves constructed from this data were similar to the dark-adapted curve but were shifted horizontally and slightly vertically, so that they still spanned about 3.5 log units of intensity. Thus, in the light-adapted cone, graded responses were elicited by a range of bright test pulses which would have produced saturated responses when delivered to the dark-adapted cone. 6. The 'off response' observed at the offset of the background became faster as the background intensity was increased. It also became faster with time following the onset of any particular background intensity. 7. It was concluded that cone sensitivity during any state of light-adaptation is determined by two mechanisms; response compression resulting from the instantaneous non-linearity between 'internal transmitter' concentration and membrane potential and a more active 'cellular adaptation' mechanism which is manifest as a shift in the intensity-response curve. In the steady-state condition of light-adaptation, most of the sensitivity changes are a result of the cellular adaptation mechanism. 8. Photopigment bleaching caused by the backgrounds, negative feed-back from horizontal cells and voltage dependent mechanisms in the cones could not account for this cellular adaptation. These effects of background illumination were interpreted in terms of the 'internal transmitter' hypothesis of phototransduction.
摘要
  1. 在锦龟(Pseduemys scripta elegans)视网膜中,对明适应和暗适应的红、绿视锥光感受器的光反应进行了细胞内记录。背景光照对两种视锥产生了相似的影响。2. 对持续稳定的背景光照开始反应时,视锥最初超极化至峰值,然后回落至稳定状态极化,该极化通常约为初始峰值幅度的一半。在所有研究的背景(暗背景以及亮背景)下均观察到这种回落。3. 伴随着这种回落观察到了一种再敏化现象;随着光适应的进行,最大增量和减量反应的幅度均增大。在背景光照约2 - 3分钟后,这些反应的幅度稳定下来。4. 暗适应视锥对一系列强度范围约为3.5个对数单位的测试脉冲产生分级反应。这些反应的幅度很好地符合V = I.Vm/(I + sigma)的关系。5. 在背景光照2 - 3分钟后,用比背景强度更亮或更暗的500毫秒测试脉冲替代背景。根据这些数据构建的光适应强度 - 反应曲线与暗适应曲线相似,但在水平和垂直方向上都有偏移,因此它们仍然跨越约3.5个对数单位的强度范围。因此,在光适应视锥中,一系列亮测试脉冲引发了分级反应,而当这些脉冲施加到暗适应视锥时会产生饱和反应。6. 在背景光照结束时观察到的“关闭反应”随着背景强度的增加而变得更快。在任何特定背景强度开始后的时间里,它也会变得更快。7. 得出的结论是,在任何光适应状态下视锥的敏感性由两种机制决定;“内部递质”浓度与膜电位之间的瞬时非线性导致的反应压缩,以及一种更活跃的“细胞适应”机制,其表现为强度 - 反应曲线的偏移。在光适应的稳定状态下,大多数敏感性变化是细胞适应机制的结果。8. 背景引起的光色素漂白、水平细胞的负反馈以及视锥中的电压依赖性机制无法解释这种细胞适应。背景光照的这些效应根据光转导的“内部递质”假说进行了解释。

相似文献

1
The effects of background illumination on the photoresponses of red and green cones.
J Physiol. 1979 Jan;286:491-507. doi: 10.1113/jphysiol.1979.sp012633.
2
Signal transmission from red cones to horizontal cells in the turtle retina.
J Physiol. 1979 Jan;286:509-24. doi: 10.1113/jphysiol.1979.sp012634.
3
Background and bleaching adaptation in luminosity type horizontal cells in the isolated turtle retina.
J Physiol. 1990 Feb;421:321-41. doi: 10.1113/jphysiol.1990.sp017947.
4
Sensitivity of toad rods: Dependence on wave-length and background illumination.
J Physiol. 1976 Sep;261(1):71-101. doi: 10.1113/jphysiol.1976.sp011549.
5
Properties of centre-hyperpolarizing, red-sensitive bipolar cells in the turtle retina.
J Physiol. 1975 Jun;248(2):317-34. doi: 10.1113/jphysiol.1975.sp010976.
6
Mixing of color signals by turtle cone photoreceptors.
J Neurophysiol. 1985 Aug;54(2):293-303. doi: 10.1152/jn.1985.54.2.293.
7
Electrical responses of double cones in the turtle retina.
J Physiol. 1974 Nov;242(3):673-83. doi: 10.1113/jphysiol.1974.sp010730.
8
Analysis of electrical noise in turtle cones.
J Physiol. 1977 Nov;272(2):435-68. doi: 10.1113/jphysiol.1977.sp012053.
9
Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle.
J Neurosci. 1994 Mar;14(3 Pt 1):1091-105. doi: 10.1523/JNEUROSCI.14-03-01091.1994.
10
Colour-dependence of cone responses in the turtle retina.
J Physiol. 1973 Oct;234(1):199-216. doi: 10.1113/jphysiol.1973.sp010341.

引用本文的文献

2
Assessing visual performance during intense luminance changes in virtual reality.
Heliyon. 2024 Nov 16;10(22):e40349. doi: 10.1016/j.heliyon.2024.e40349. eCollection 2024 Nov 30.
3
Melanopsin-mediated amplification of cone signals in the human visual cortex.
Proc Biol Sci. 2024 May;291(2023):20232708. doi: 10.1098/rspb.2023.2708. Epub 2024 May 29.
4
Efficient Temporal Coding in the Early Visual System: Existing Evidence and Future Directions.
Front Comput Neurosci. 2022 Jul 4;16:929348. doi: 10.3389/fncom.2022.929348. eCollection 2022.
6
Stimulus Driven Functional Transformations in the Early Olfactory System.
Front Cell Neurosci. 2021 Aug 3;15:684742. doi: 10.3389/fncel.2021.684742. eCollection 2021.
7
Circadian Responses to Light-Flash Exposure: Conceptualization and New Data Guiding Future Directions.
Front Neurol. 2021 Feb 11;12:627550. doi: 10.3389/fneur.2021.627550. eCollection 2021.
8
Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina.
Physiol Rev. 2019 Jul 1;99(3):1527-1573. doi: 10.1152/physrev.00027.2018.
10
Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina.
J Neurosci. 2017 Sep 27;37(39):9498-9509. doi: 10.1523/JNEUROSCI.0529-17.2017. Epub 2017 Sep 4.

本文引用的文献

1
CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS.
J Physiol. 1964 Aug;172(2):239-63. doi: 10.1113/jphysiol.1964.sp007415.
2
Receptive fields of cones in the retina of the turtle.
J Physiol. 1971 Apr;214(2):265-94. doi: 10.1113/jphysiol.1971.sp009432.
3
Rhodopsin kinetics in the human eye.
J Physiol. 1971 Sep;217(2):447-71. doi: 10.1113/jphysiol.1971.sp009580.
4
Detection and resolution of visual stimuli by turtle photoreceptors.
J Physiol. 1973 Oct;234(1):163-98. doi: 10.1113/jphysiol.1973.sp010340.
5
The visual process: Excitatory mechanisms in the primary receptor cells.
Annu Rev Biophys Bioeng. 1972;1:131-58. doi: 10.1146/annurev.bb.01.060172.001023.
6
Changes in time scale and sensitivity in turtle photoreceptors.
J Physiol. 1974 Nov;242(3):729-58. doi: 10.1113/jphysiol.1974.sp010732.
7
The electrical response of turtle cones to flashes and steps of light.
J Physiol. 1974 Nov;242(3):685-727. doi: 10.1113/jphysiol.1974.sp010731.
8
Electrical responses of single cones in the retina of the turtle.
J Physiol. 1970 Mar;207(1):77-92. doi: 10.1113/jphysiol.1970.sp009049.
9
Intracellular recordings from gecko photoreceptors during light and dark adaptation.
J Gen Physiol. 1975 Nov;66(5):617-48. doi: 10.1085/jgp.66.5.617.
10
Spontaneous voltage fluctuations in retinal cones and bipolar cells.
Nature. 1975 Aug 21;256(5519):661-2. doi: 10.1038/256661a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验