Suppr超能文献

转运核糖核酸的酶促修饰

Enzymatic modification of transfer RNA.

作者信息

Söll D

出版信息

Science. 1971 Jul 23;173(3994):293-9. doi: 10.1126/science.173.3994.293.

Abstract

The molecular events leading to the synthesis of mature tRNA are only now becoming amenable to experimental study. In bacterial and mammalian cells tRNA genes are transcribed into precursor tRNA. These molecules, when isolated, contain additional nucleotides at both ends (20) of the mature tRNA and lack most modified nucleosides. Presumably, specific nucleases ("trimming" enzymes) cut the precursor to proper tRNA size. The C-C-A nucleotide sequence of the amino acid acceptor end common to all tRNA's does not seem to be coded by tRNA genes (30), and may be added to the trimmed molecules by the tRNA-CMP-AMP-pyrophosphorylase (71). Modifications at the polynucleotide level of the heterocyclic bases or the sugar residues give rise to the modified nucleosides in tRNA. Although newly available substrates have allowed the detection of more of the enzymes involved in these reactions, there is still no knowledge about the sequence of modification or trimming events leading to the synthesis of active tRNA. Progress in these studies may not be easy because enzyme preparations free of nucleases or other tRNA modifying enzymes are required. The role of the modified nucleosides in the biological functions of tRNA is still unknown. Possibly pseudouridine is required for ribosome mediated protein synthesis; some other modified nucleosides in tRNA are not required for this reaction, but may enhance its rate. What might be the role of the large variety of modified nucleosides in tRNA? One is tempted to speculate that such nucleosides are important in other cellular processes in which tRNA is thought to participate such as virus infection, cell differentiation, and hormone action (2, 3). Mutants in a number of tRNA-modifying enzymes are needed in order to extend our knowledge of their purpose and of tRNA involvement in other biological processes. But unless tRNA-modifying enzymes specific for a particular tRNA species exist, no simple selection procedure can be devised. Possibly some of the regulatory mutants of amino acid biosynthesis may prove to affect tRNA-modifying enzymes (72). Transfer RNA's are macromolecules well suited for the study of nucleic acid-protein interactions. The tRNA molecules are structurally very similar, and they interact with a large number of enzymes or protein factors (2, 3). Each aminoacyl-tRNA synthetase, for instance, very precisely recognizes a set of cognate isoacceptor tRNA's (2, 73). The availability of the tRNA- modifying enzymes adds another dimension to the problem of the nature of specific recognition of tRNA by proteins. There are some tRNA-modifying enzymes, such as the uracil-tRNA methylase, which may recognize all tRNA species, while others, such as the isopentenyl-tRNA transferase, probably recognize only a selected set of tRNA molecules, even with different amino acid accepting capacities. With well-characterized RNA precursor and tRNA molecules we can hope to delineate those features of primary, secondary, and tertiary structure involved in the specific interactions of tRNA with these enzymes.

摘要

导致成熟tRNA合成的分子事件直到现在才开始适合进行实验研究。在细菌和哺乳动物细胞中,tRNA基因被转录成前体tRNA。这些分子在分离出来时,在成熟tRNA的两端(20)都含有额外的核苷酸,并且缺乏大多数修饰核苷。据推测,特定的核酸酶(“修剪”酶)将前体切割成合适的tRNA大小。所有tRNA共有的氨基酸接受末端的C-C-A核苷酸序列似乎不是由tRNA基因编码的(30),可能是由tRNA-CMP-AMP-焦磷酸化酶添加到修剪后的分子上的(71)。杂环碱基或糖残基在多核苷酸水平上的修饰产生了tRNA中的修饰核苷。尽管新获得的底物使得能够检测到更多参与这些反应的酶,但对于导致活性tRNA合成的修饰或修剪事件的顺序仍然一无所知。这些研究的进展可能并不容易,因为需要不含核酸酶或其他tRNA修饰酶的酶制剂。修饰核苷在tRNA生物学功能中的作用仍然未知。假尿苷可能是核糖体介导的蛋白质合成所必需的;tRNA中的一些其他修饰核苷对于这个反应不是必需的,但可能会提高其速率。tRNA中各种各样的修饰核苷可能有什么作用呢?有人不禁推测,这些核苷在tRNA被认为参与的其他细胞过程中很重要,比如病毒感染、细胞分化和激素作用(2,3)。为了扩展我们对它们的用途以及tRNA参与其他生物过程的了解,需要许多tRNA修饰酶的突变体。但是除非存在针对特定tRNA种类的tRNA修饰酶,否则无法设计出简单的筛选程序。可能一些氨基酸生物合成的调节突变体可能会被证明影响tRNA修饰酶(72)。转运RNA是非常适合研究核酸-蛋白质相互作用的大分子。tRNA分子在结构上非常相似,并且它们与大量的酶或蛋白质因子相互作用(2,3)。例如,每种氨酰-tRNA合成酶都非常精确地识别一组同源同功受体tRNA(2,73)。tRNA修饰酶的存在为蛋白质对tRNA特异性识别的本质问题又增加了一个层面。有一些tRNA修饰酶,比如尿嘧啶-tRNA甲基ase,可能识别所有tRNA种类,而其他一些酶,比如异戊烯基-tRNA转移ase,可能只识别一组选定的tRNA分子,即使它们具有不同的氨基酸接受能力。有了特征明确的RNA前体和tRNA分子,我们有望描绘出参与tRNA与这些酶特异性相互作用的一级、二级和三级结构的那些特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验