Suppr超能文献

细菌鞭毛的合成。II. 枯草芽孢杆菌中鞭毛特异性标记的PBS1转导

Synthesis of bacterial flagella. II. PBS1 transduction of flagella-specific markers in Bacillus subtilis.

作者信息

Grant G F, Simon M I

出版信息

J Bacteriol. 1969 Jul;99(1):116-24. doi: 10.1128/jb.99.1.116-124.1969.

Abstract

The linkage relationship of mutants involved in the synthesis of flagella was determined by PBSl transduction. Mutants that affect the structure of flagellin (hag) and temperature-sensitive mutants (flaTS) that produce flagella when grown at 37 C but not when grown at 46 C were examined. All of the mutants were found to be linked to the hisA1 marker. The flaTS mutants fell into three clusters. Group A contained the majority of mutants which were loosely grouped around the hag locus. Group B mutants were segregated from the hag locus and appeared closely linked to the phage adsorption site gene (gtaA), and group C was only loosely linked to hisA1 and thus far contains only one mutant. A flagella locus (ifm) affecting both the degree of motility and level of flagellation was shown to map near group A. Mutants affecting motility (mot) were not linked to hisA1 by PBSl transduction. Several markers previously shown to link to hisA1 were ordered with respect to hisA1 and the flagellar genes.

摘要

通过PBS1转导确定了参与鞭毛合成的突变体之间的连锁关系。研究了影响鞭毛蛋白结构的突变体(hag)以及温度敏感突变体(flaTS),后者在37℃生长时能产生鞭毛,但在46℃生长时则不能。所有突变体均被发现与hisA1标记连锁。flaTS突变体分为三个簇。A组包含大多数突变体,它们松散地聚集在hag基因座周围。B组突变体与hag基因座分离,似乎与噬菌体吸附位点基因(gtaA)紧密连锁,而C组仅与hisA1松散连锁,到目前为止只包含一个突变体。一个影响运动程度和鞭毛形成水平的鞭毛基因座(ifm)被证明定位于A组附近。影响运动性的突变体(mot)通过PBS1转导不与hisA1连锁。几个先前显示与hisA1连锁的标记相对于hisA1和鞭毛基因进行了排序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90bd/249975/9b0deec0e58e/jbacter00387-0148-a.jpg

相似文献

1
Synthesis of bacterial flagella. II. PBS1 transduction of flagella-specific markers in Bacillus subtilis.
J Bacteriol. 1969 Jul;99(1):116-24. doi: 10.1128/jb.99.1.116-124.1969.
2
Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis.
J Bacteriol. 1969 Jun;98(3):1087-97. doi: 10.1128/jb.98.3.1087-1097.1969.
3
Mapping of a temperate bacteriophage active on Bacillus subtilis.
J Virol. 1969 Jan;3(1):38-44. doi: 10.1128/JVI.3.1.38-44.1969.
4
Synthesis of bacterial flagella: chromosomal synchrony and flagella synthesis.
J Bacteriol. 1969 Oct;100(1):283-7. doi: 10.1128/jb.100.1.283-287.1969.
7
Genetic mapping of a defective bacteriophage on the chromosome of Bacillus subtilis 168.
J Virol. 1970 Sep;6(3):340-3. doi: 10.1128/JVI.6.3.340-343.1970.
8
Sporulation in Bacillus subtilis. Genetic analysis of oligosporogenous mutants.
J Gen Microbiol. 1972 Jun;71(1):17-27. doi: 10.1099/00221287-71-1-17.
9
Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis.
J Bacteriol. 1984 Dec;160(3):1123-9. doi: 10.1128/jb.160.3.1123-1129.1984.
10
Genetic analysis in Bacillus pumilus by PBSI-mediated transduction.
J Bacteriol. 1970 Feb;101(2):603-8. doi: 10.1128/jb.101.2.603-608.1970.

引用本文的文献

1
The SinR·SlrR Heteromer Attenuates Transcription of a Long Operon of Flagellar Genes in Bacillus subtilis.
J Mol Biol. 2025 Jun 15;437(12):169123. doi: 10.1016/j.jmb.2025.169123. Epub 2025 Apr 3.
2
SwrA-mediated Multimerization of DegU and an Upstream Activation Sequence Enhance Flagellar Gene Expression in Bacillus subtilis.
J Mol Biol. 2024 Feb 15;436(4):168419. doi: 10.1016/j.jmb.2023.168419. Epub 2023 Dec 21.
3
The structure and regulation of flagella in Bacillus subtilis.
Annu Rev Genet. 2014;48:319-40. doi: 10.1146/annurev-genet-120213-092406. Epub 2014 Sep 10.
4
Swarming motility and the control of master regulators of flagellar biosynthesis.
Mol Microbiol. 2012 Jan;83(1):14-23. doi: 10.1111/j.1365-2958.2011.07917.x. Epub 2011 Nov 22.
6
Cell population heterogeneity during growth of Bacillus subtilis.
Genes Dev. 2005 Dec 15;19(24):3083-94. doi: 10.1101/gad.1373905.
8
Genetic and enzymic studies on the recombination process in Bacillus subtilis.
Mol Gen Genet. 1975;136(1):9-30. doi: 10.1007/BF00275445.

本文引用的文献

1
Adsorption Specificity of Bacteriophage PBS1.
J Bacteriol. 1966 Aug;92(2):388-9. doi: 10.1128/jb.92.2.388-389.1966.
2
REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS.
J Bacteriol. 1961 May;81(5):741-6. doi: 10.1128/jb.81.5.741-746.1961.
3
Transducing phages for Bacillus subtilis.
J Gen Microbiol. 1963 May;31:211-7. doi: 10.1099/00221287-31-2-211.
4
A proposal for a uniform nomenclature in bacterial genetics.
Genetics. 1966 Jul;54(1):61-76. doi: 10.1093/genetics/54.1.61.
5
A single amino acid substitution responsible for altered flagellar morphology.
J Mol Biol. 1968 Jun 28;34(3):559-64. doi: 10.1016/0022-2836(68)90180-0.
6
Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168.
Proc Natl Acad Sci U S A. 1967 Dec;58(6):2377-84. doi: 10.1073/pnas.58.6.2377.
7
The response of sporogenesis in Bacillus subtilis to acriflavine.
Can J Microbiol. 1968 Jan;14(1):61-4. doi: 10.1139/m68-010.
9
Genetic mapping in Bacillus subtilis.
J Mol Biol. 1967 Jul 14;27(1):163-85. doi: 10.1016/0022-2836(67)90358-0.
10
Molecular weight of the DNA in the chromosomes of E. coli and B. subtilis.
Proc Natl Acad Sci U S A. 1965 Dec;54(6):1636-41. doi: 10.1073/pnas.54.6.1636.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验