Suppr超能文献

心脏动作电位的两个组成部分。I. 电压-时间过程以及乙酰胆碱对兔心脏心房和节点细胞的影响。

Two components of the cardiac action potential. I. Voltage-time course and the effect of acetylcholine on atrial and nodal cells of the rabbit heart.

作者信息

de Carvalho A P, Hoffman B F, de Carvalho M P

出版信息

J Gen Physiol. 1969 Nov;54(5):607-35. doi: 10.1085/jgp.54.5.607.

Abstract

Transmembrane potentials recorded from the rabbit heart in vitro were displayed as voltage against time (V, t display), and dV/dt against voltage (V, V or phase-plane display). Acetylcholine was applied to the recording site by means of a hydraulic system. Results showed that (a) differences in time course of action potential upstroke can be explained in terms of the relative magnitude of fast and slow phases of depolarization; (b) acetylcholine is capable of depressing the slow phase of depolarization as well as the plateau of the action potential; and (c) action potentials from nodal (SA and AV) cells seem to lack the initial fast phase. These results were construed to support a two-component hypothesis for cardiac electrogenesis. The hypothesis states that cardiac action potentials are composed of two distinct and physiologically separable "components" which result from discrete mechanisms. An initial fast component is a sodium spike similar to that of squid nerve. The slow component, which accounts for both a slow depolarization during phase 0 and the plateau, probably is dependent on the properties of a slow inward current having a positive equilibrium potential, coupled to a decrease in the resting potassium conductance. According to the hypothesis, SA and AV nodal action potentials are due entirely or almost entirely to the slow component and can therefore be expected to exhibit unique electrophysiological and pharmacological properties.

摘要

从体外兔心脏记录的跨膜电位以电压对时间(V - t显示)以及dV/dt对电压(V - V或相平面显示)的形式呈现。通过液压系统将乙酰胆碱施加到记录部位。结果表明:(a)动作电位上升支时间进程的差异可以用去极化快相和慢相的相对大小来解释;(b)乙酰胆碱能够抑制去极化的慢相以及动作电位的平台期;(c)来自结区(窦房结和房室结)细胞的动作电位似乎缺乏初始快相。这些结果被认为支持心脏电发生的双成分假说。该假说指出,心脏动作电位由两个不同且在生理上可分离的“成分”组成,它们由不同的机制产生。初始快成分是类似于乌贼神经的钠峰。慢成分,它既解释了0期的缓慢去极化又解释了平台期,可能依赖于具有正平衡电位的缓慢内向电流的特性,并伴有静息钾电导的降低。根据该假说,窦房结和房室结动作电位完全或几乎完全归因于慢成分,因此可以预期它们会表现出独特的电生理和药理特性。

相似文献

6
Properties of the fibers in the pathways along the anterior and posterior portions of the left A-V ring.
J Electrocardiol. 1980;13(1):25-36. doi: 10.1016/s0022-0736(80)80006-9.
8
Slow-channel depolarization: mechanism and control of arrhythmias.
Annu Rev Med. 1978;29:417-26. doi: 10.1146/annurev.me.29.020178.002221.
9
The effect of polarization on the action potentials of the rabbit AV nodal cells.
Jpn J Physiol. 1974 Dec;24(6):605-16. doi: 10.2170/jjphysiol.24.605.

引用本文的文献

1
hERG-toxicity prediction using traditional machine learning and advanced deep learning techniques.
Curr Res Toxicol. 2023 Sep 1;5:100121. doi: 10.1016/j.crtox.2023.100121. eCollection 2023.
2
Determinants of new wavefront locations in cholinergic atrial fibrillation.
Europace. 2018 Nov 1;20(suppl_3):iii3-iii15. doi: 10.1093/europace/euy235.
3
Quantification of the transmural dynamics of atrial fibrillation by simultaneous endocardial and epicardial optical mapping in an acute sheep model.
Circ Arrhythm Electrophysiol. 2015 Apr;8(2):456-65. doi: 10.1161/CIRCEP.114.002545. Epub 2015 Feb 24.
4
Exercise heart rate acceleration patterns during atrial fibrillation and sinus rhythm.
Ann Noninvasive Electrocardiol. 2011 Oct;16(4):357-64. doi: 10.1111/j.1542-474X.2011.00463.x.
8
Electrophysiological effects of the salicylates on isolated atrial muscle of the rabbit.
Br J Pharmacol. 1982 Oct;77(2):285-92. doi: 10.1111/j.1476-5381.1982.tb09297.x.
10
The blockade of Vmax of the atrioventricular action potential produced by the slow channel inhibitors verapamil and nifedipine.
Naunyn Schmiedebergs Arch Pharmacol. 1981 Apr;316(2):178-85. doi: 10.1007/BF00505314.

本文引用的文献

1
The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle.
J Physiol. 1960 Dec;154(2):385-407. doi: 10.1113/jphysiol.1960.sp006586.
2
The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):497-506. doi: 10.1113/jphysiol.1952.sp004719.
3
The components of membrane conductance in the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):473-96. doi: 10.1113/jphysiol.1952.sp004718.
4
[DEMONSTRATION OF 2 COMPONENTS IN THE RISING PHASE OF THE ACTION POTENTIAL IN FROG MYOCARIDAL FIBERS].
Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Apr 6;283:187-202.
5
AN ANALYSIS OF THE STRIATED MUSCLE FIBER ACTION CURRENT.
Biophys J. 1964 Mar;4(2):77-91. doi: 10.1016/s0006-3495(64)86770-9.
6
INFLUENCE OF LITHIUM IONS ON THE TRANSMEMBRANE POTENTIAL AND CATION CONTENT OF CARDIAC CELLS.
J Gen Physiol. 1964 Jan;47(3):501-30. doi: 10.1085/jgp.47.3.501.
7
Is the fundamental electrical response of the single heart muscle cell a spike potential?
J Gen Physiol. 1963 May;46(5):1029-46. doi: 10.1085/jgp.46.5.1029.
9
Current-voltage relations of Purkinje fibres in sodium-deficient solutions.
J Physiol. 1963 Apr;166(1):225-40. doi: 10.1113/jphysiol.1963.sp007102.
10
Spread of activity through the atrioventricular node.
Circ Res. 1960 Jul;8:801-9. doi: 10.1161/01.res.8.4.801.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验