Suppr超能文献

嗜盐菌中的离子代谢。I. 培养物年龄对细胞内浓度的影响。

Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations.

作者信息

Ginzburg M, Sachs L, Ginzburg B Z

出版信息

J Gen Physiol. 1970 Feb;55(2):187-207. doi: 10.1085/jgp.55.2.187.

Abstract

Work is described on the changes in cell ions during growth of cultures of a species of Halobacterium isolated from the Dead Sea. Cell K concentration fell from 5.5 to 3.8 moles per kg cell water during the logarithmic phase of growth and maintained the latter value during the stationary phase (initial medium concentration, 7 mM). Cell Na and Cl followed a complex series of roughly parallel changes. The logarithmic phase ion concentrations were: Na, 1.0-2.3 moles/kg cell water; Cl, 2.3-3.7 moles/kg cell water. The final stationary phase values were: Na, 0.5 moles/kg cell water; Cl, 2.3-2.9 moles/kg cell water (medium NaCl concentration, 3.9 Molal). It is suggested that most of the K(+) is bound within the cytoplasm.

摘要

本文描述了从死海分离出的一种嗜盐菌培养物生长过程中细胞离子的变化。在对数生长期,细胞内钾离子浓度从每千克细胞水5.5摩尔降至3.8摩尔,并在稳定期维持该值(初始培养基浓度为7毫摩尔)。细胞内钠离子和氯离子呈现出一系列复杂且大致平行的变化。对数生长期的离子浓度为:钠离子,每千克细胞水1.0 - 2.3摩尔;氯离子,每千克细胞水2.3 - 3.7摩尔。稳定期末期的值为:钠离子,每千克细胞水0.5摩尔;氯离子,每千克细胞水2.3 - 2.9摩尔(培养基氯化钠浓度为3.9摩尔)。研究表明,大部分钾离子(K⁺)结合在细胞质内。

相似文献

1
2
Regulation of cell volume and ion concentrations in a Halobacterium.
J Membr Biol. 1976 Mar 18;26(2-3):153-71. doi: 10.1007/BF01868871.
4
A microprobe analysis of inorganic elements in Halobacterium salinarum.
Cell Biol Int. 2005 Aug;29(8):616-22. doi: 10.1016/j.cellbi.2005.03.024.
5
The state of binding of intracellular K + in Halobacterium cutirubrum.
Can J Microbiol. 1972 Jul;18(7):993-5. doi: 10.1139/m72-154.
9
Relationship between proton motive force and potassium ion transport in Halobacterium halobium envelope vesicles.
Arch Biochem Biophys. 1979 Apr 1;193(2):329-39. doi: 10.1016/0003-9861(79)90037-7.

引用本文的文献

1
Determination of proteome molecular dynamics in different halophilic Archaea.
J R Soc Interface. 2025 Mar;22(224):20240630. doi: 10.1098/rsif.2024.0630. Epub 2025 Mar 12.
2
Identification of the Biosynthetic Pathway of Glycine Betaine That Is Responsible for Salinity Tolerance in Halophilic D301.
Front Microbiol. 2022 Apr 18;13:875843. doi: 10.3389/fmicb.2022.875843. eCollection 2022.
3
Energy at Origins: Favorable Thermodynamics of Biosynthetic Reactions in the Last Universal Common Ancestor (LUCA).
Front Microbiol. 2021 Dec 13;12:793664. doi: 10.3389/fmicb.2021.793664. eCollection 2021.
4
Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition.
Nat Commun. 2020 Oct 30;11(1):5490. doi: 10.1038/s41467-020-19200-2.
6
Methylomes of Two Extremely Halophilic Species, Haloarcula marismortui and Haloferax mediterranei.
Microbiol Resour Announc. 2019 Jul 3;8(27):e00577-19. doi: 10.1128/MRA.00577-19.
7
Environmental factors influence the Haloferax volcanii S-layer protein structure.
PLoS One. 2019 May 10;14(5):e0216863. doi: 10.1371/journal.pone.0216863. eCollection 2019.
8
Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation.
Chem Rev. 2018 Feb 28;118(4):1691-1741. doi: 10.1021/acs.chemrev.7b00305. Epub 2018 Jan 10.
10
Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jun;1862(6):589-599. doi: 10.1016/j.bbalip.2017.03.005. Epub 2017 Mar 19.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
ELECTROLYTE METABOLISM IN HELA CELLS.
J Gen Physiol. 1963 Jul;46(6):1303-15. doi: 10.1085/jgp.46.6.1303.
3
Measurement of membrane potentials in Neurospora.
Science. 1962 Jun 8;136(3519):876-7. doi: 10.1126/science.136.3519.876.
4
Solute concentrations within cells of halophilic and non-halophilic bacteria.
Biochim Biophys Acta. 1962 Dec 17;65:506-8. doi: 10.1016/0006-3002(62)90453-5.
6
Differential density separation of cellular suspensions.
Anal Biochem. 1960 Nov;1:263-8. doi: 10.1016/0003-2697(60)90053-1.
7
Osmotic properties of mitochondria.
J Gen Physiol. 1967 Jul;50(6):1547-63. doi: 10.1085/jgp.50.6.1547.
8
The unusual membrane permeability of two halophilic unicellular organisms.
Biochim Biophys Acta. 1969 Apr;173(3):370-6. doi: 10.1016/0005-2736(69)90002-9.
9
Measurement of the membrane potential and evidence for active transport of ions in Chlorella pyrenoidosa.
Biochim Biophys Acta. 1968 Jun 11;150(4):618-25. doi: 10.1016/0005-2736(68)90051-5.
10
Cation transport and metabolism in Streptococcus fecalis.
Biochim Biophys Acta. 1966 Oct 10;126(2):308-20. doi: 10.1016/0926-6585(66)90068-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验