Suppr超能文献

宫颈细胞图像的马尔可夫分析

Markovian analysis of cervical cell images.

作者信息

Pressman N J

出版信息

J Histochem Cytochem. 1976 Jan;24(1):138-44. doi: 10.1177/24.1.56387.

Abstract

Markovian analysis is a method to measure optical texture based on gray-level transition probabilities in digitized images. Experiments are described that investigate that classification performance of parameters generated by Markovian analysis. Results using Markov texture parameters show that the selection of a Markov step size strongly affects classification error rates and the number of parameters required to achieve the maximum correct classification rates. Markov texture parameters are shown to achieve high rates of correct classification in discriminating images of normal from abnormal cervical cell nuclei.

摘要

马尔可夫分析是一种基于数字化图像中灰度级转移概率来测量光学纹理的方法。文中描述了一些实验,这些实验研究了马尔可夫分析所生成参数的分类性能。使用马尔可夫纹理参数的结果表明,马尔可夫步长的选择对分类错误率以及实现最大正确分类率所需的参数数量有很大影响。结果表明,马尔可夫纹理参数在区分正常与异常宫颈细胞核图像时能实现较高的正确分类率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验