Suppr超能文献

二价阳离子对鱿鱼轴突钾离子电导的影响:表面电荷的测定

Effect of divalent cations on potassium conductance of squid axons: determination of surface charge.

作者信息

Gilbert D L, Ehrenstein G

出版信息

Biophys J. 1969 Mar;9(3):447-63. doi: 10.1016/S0006-3495(69)86396-4.

Abstract

Potassium conductance-voltage curves have been determined for a squid axon in high external potassium solution for a wide range of divalent cation concentrations. A decrease in divalent ion concentration shifts the conductance-voltage curve along the voltage axis in the direction of more hyperpolarized voltages by as much as 9 mv for an e-fold change in concentration. When the divalent ion concentration is less than about 5 mM, a further decrease does not cause a significant shift of the conductance-voltage curve. These results can be explained by assuming that on the outer surface of the membrane there is a negative fixed charge which can bind calcium ions, and that the axon is sensitive to the resulting double-layer potential. From our data, the best value for charge density was found to be one electronic charge per 120 square angstroms, and a lower limit to be one electronic charge per 280 square angstroms.

摘要

已针对处于高外部钾溶液中的乌贼轴突,在广泛的二价阳离子浓度范围内测定了钾电导-电压曲线。对于浓度每呈e倍变化,二价离子浓度的降低会使电导-电压曲线沿电压轴朝着超极化电压方向移动多达9毫伏。当二价离子浓度小于约5毫摩尔时,进一步降低不会导致电导-电压曲线发生显著移动。这些结果可以通过假设膜外表面存在可结合钙离子的负固定电荷,且轴突对由此产生的双层电位敏感来解释。根据我们的数据,发现电荷密度的最佳值为每120平方埃一个电子电荷,下限为每280平方埃一个电子电荷。

相似文献

1
Effect of divalent cations on potassium conductance of squid axons: determination of surface charge.
Biophys J. 1969 Mar;9(3):447-63. doi: 10.1016/S0006-3495(69)86396-4.
2
Removal of potassium negative resistance in perfused squid giant axons.
J Gen Physiol. 1967 Jul;50(6):1499-515. doi: 10.1085/jgp.50.6.1499.
4
Asymmetric modulation and blockade of the delayed rectifier in squid giant axons by divalent cations.
Biophys J. 1995 Nov;69(5):1773-9. doi: 10.1016/S0006-3495(95)80047-0.
5
Action of external divalent ion reduction on sodium movement in the squid giant axon.
J Gen Physiol. 1961 Sep;45(1):93-103. doi: 10.1085/jgp.45.1.93.
7
Magnitude and location of surface charges on Myxicola giant axons.
J Gen Physiol. 1975 Jul;66(1):47-65. doi: 10.1085/jgp.66.1.47.
8
Dynamics of potassium ion currents in squid axon membrane. A re-examination.
Biophys J. 1981 Dec;36(3):715-22. doi: 10.1016/S0006-3495(81)84760-1.
9
Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH.
Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301-18. doi: 10.1098/rstb.1975.0011.

引用本文的文献

1
Honeybee CaV4 has distinct permeation, inactivation, and pharmacology from homologous NaV channels.
J Gen Physiol. 2024 May 6;156(5). doi: 10.1085/jgp.202313509. Epub 2024 Apr 1.
2
Metal Bridge in S4 Segment Supports Helix Transition in Shaker Channel.
Biophys J. 2020 Feb 25;118(4):922-933. doi: 10.1016/j.bpj.2019.08.035. Epub 2019 Sep 5.
3
Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.
J Neurophysiol. 2015 Jun 1;113(10):3759-77. doi: 10.1152/jn.00551.2014. Epub 2015 Apr 1.
4
High concentrations of divalent cations isolate monosynaptic inputs from local circuits in the auditory midbrain.
Front Neural Circuits. 2013 Oct 29;7:175. doi: 10.3389/fncir.2013.00175. eCollection 2013.
6
A contribution to the history of the proton channel.
Wiley Interdiscip Rev Membr Transp Signal. 2012 Sep;1(5):533-557. doi: 10.1002/wmts.59. Epub 2012 Aug 6.
7
Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable.
J Neurophysiol. 2010 Mar;103(3):1357-74. doi: 10.1152/jn.00123.2009. Epub 2010 Jan 6.
8
Evaluation of Ca2+ permeability of nicotinic acetylcholine receptors in hypothalamic histaminergic neurons.
Acta Biochim Biophys Sin (Shanghai). 2010 Jan;42(1):8-20. doi: 10.1093/abbs/gmp101.
9
Modulation of the cold-activated cation channel TRPM8 by surface charge screening.
J Physiol. 2010 Jan 15;588(Pt 2):315-24. doi: 10.1113/jphysiol.2009.183582. Epub 2009 Nov 30.

本文引用的文献

2
The electrical double layer and the theory of electrocapillarity.
Chem Rev. 1947 Dec;41(3):441-501. doi: 10.1021/cr60130a002.
3
Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions.
J Gen Physiol. 1962 Jul;45(6):1217-38. doi: 10.1085/jgp.45.6.1217.
4
Liquid junction and membrane potentials of the squid giant axon.
J Gen Physiol. 1960 May;43(5):971-80. doi: 10.1085/jgp.43.5.971.
5
Movement of radioactive tracers across squid axon membrane.
Am J Physiol. 1961 Jan;200:11-22. doi: 10.1152/ajplegacy.1961.200.1.11.
6
The effect of calcium on the myelinated nerve fibre.
J Physiol. 1957 Jul 11;137(2):245-60. doi: 10.1113/jphysiol.1957.sp005809.
7
The action of calcium on the electrical properties of squid axons.
J Physiol. 1957 Jul 11;137(2):218-44. doi: 10.1113/jphysiol.1957.sp005808.
8
Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane.
J Gen Physiol. 1967 Jan;50(3):583-601. doi: 10.1085/jgp.50.3.583.
9
Fixed charge in the cell membrane.
J Physiol. 1967 Apr;189(3):351-65. doi: 10.1113/jphysiol.1967.sp008173.
10
Removal of potassium negative resistance in perfused squid giant axons.
J Gen Physiol. 1967 Jul;50(6):1499-515. doi: 10.1085/jgp.50.6.1499.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验