Fitzhugh R
J Gen Physiol. 1966 May;49(5):989-1005. doi: 10.1085/jgp.49.5.989.
In the squid giant axon, Sjodin and Mullins (1958), using 1 msec duration pulses, found a decrease of threshold with increasing temperature, while Guttman (1962), using 100 msec pulses, found an increase. Both results are qualitatively predicted by the Hodgkin-Huxley model. The threshold vs. temperature curve varies so much with the assumptions made regarding the temperature-dependence of the membrane ionic conductances that quantitative comparison between theory and experiment is not yet possible. For very short pulses, increasing temperature has two effects. (1) At lower temperatures the decrease of relaxation time of Na activation (m) relative to the electrical (RC) relaxation time favors excitation and decreases threshold. (2) For higher temperatures, effect (1) saturates, but the decreasing relaxation times of Na inactivation (h) and K activation (n) factor accommodation and increased threshold. The result is a U-shaped threshold temperature curve. R. Guttman has obtained such U-shaped curves for 50 microsec pulses. Assuming higher ionic conductances decreases the electrical relaxation time and shifts the curve to the right along the temperature axis. Making the conductances increase with temperature flattens the curve. Using very long pulses favors effect (2) over (1) and makes threshold increase monotonically with temperature.
在乌贼巨轴突中,肖丁和马林斯(1958年)使用持续时间为1毫秒的脉冲,发现阈值随温度升高而降低,而古特曼(1962年)使用100毫秒的脉冲,却发现阈值升高。这两种结果在定性上都可以由霍奇金-赫胥黎模型预测。阈值与温度的曲线会因关于膜离子电导温度依赖性所做的假设而有很大变化,以至于理论与实验之间的定量比较目前还不可能。对于极短脉冲,温度升高有两个效应。(1)在较低温度下,钠激活(m)的弛豫时间相对于电(RC)弛豫时间的减少有利于兴奋并降低阈值。(2)对于较高温度,效应(1)达到饱和,但钠失活(h)和钾激活(n)的弛豫时间减少导致适应性变化并使阈值升高。结果是一条U形的阈值温度曲线。R. 古特曼已经得到了50微秒脉冲的这种U形曲线。假设更高的离子电导会减少电弛豫时间并使曲线沿温度轴向右移动。使电导随温度增加会使曲线变平。使用非常长的脉冲时,效应(2)比(1)更占优势,并且使阈值随温度单调升高。