Suppr超能文献

核酸外切酶III在含尿嘧啶DNA碱基切除修复中的作用。

Role of exonuclease III in the base excision repair of uracil-containing DNA.

作者信息

Taylor A F, Weiss B

出版信息

J Bacteriol. 1982 Jul;151(1):351-7. doi: 10.1128/jb.151.1.351-357.1982.

Abstract

Mutants of Escherichia coli K-12 deficient in both exonuclease III (the product of the xth gene) and deoxyuridine triphosphatase (the dut gene product) are inviable at high temperatures and undergo filamentation when grown at such temperatures. In dut mutants, the dUTP pool is known to be greatly enhanced, resulting in an increased substitution of uracil for thymine in DNA during replication. The subsequent removal of uracil from the DNA by uracil-DNA glycosylase produces apyrimidinic sites, at which exonuclease III is known to have an endonucleolytic activity. The lethality of dut xth mutants, therefore, indicates that exonuclease III is important for this base-excision pathway and suggests that unrepaired apyrimidinic sites are lethal. Two confirmatory findings were as follows. (i) dut xth mutants were viable if they also had a mutation in the uracil-DNA glycosylase (ung) gene; such mutants should not remove uracil from DNA and should not, therefore, generate apyrimidinic sites. (ii) In the majority of the temperature-resistant revertants isolated, viability had been restored by a mutation in the dCTP deaminase (dcd) gene; such mutations should decrease dUTP production and hence uracil misincorporation. The results indicate that, in dut mutants, exonuclease III is essential for the repair of uracil-containing DNA and of apyrimidinic sites.

摘要

大肠杆菌K-12的突变体若同时缺乏核酸外切酶III(xth基因的产物)和脱氧尿苷三磷酸酶(dut基因产物),则在高温下无法存活,且在该温度下生长时会发生丝状化。在dut突变体中,已知dUTP库会大幅增加,导致DNA复制过程中尿嘧啶取代胸腺嘧啶的情况增多。随后尿嘧啶-DNA糖基化酶从DNA中去除尿嘧啶会产生无嘧啶位点,已知核酸外切酶III在这些位点具有内切核酸酶活性。因此,dut xth突变体的致死性表明核酸外切酶III对这种碱基切除途径很重要,并提示未修复的无嘧啶位点是致死性的。两项确证性发现如下:(i)如果dut xth突变体在尿嘧啶-DNA糖基化酶(ung)基因中也有突变,则它们可以存活;此类突变体不应从DNA中去除尿嘧啶,因此也不应产生无嘧啶位点。(ii)在分离出的大多数耐温回复突变体中,dCTP脱氨酶(dcd)基因中的突变恢复了其活力;此类突变应会减少dUTP的产生,从而减少尿嘧啶的错误掺入。结果表明,在dut突变体中,核酸外切酶III对于含尿嘧啶DNA和无嘧啶位点的修复至关重要。

相似文献

1
Role of exonuclease III in the base excision repair of uracil-containing DNA.
J Bacteriol. 1982 Jul;151(1):351-7. doi: 10.1128/jb.151.1.351-357.1982.
2
Multiple mutant of Escherichia coli synthesizing virtually thymineless DNA during limited growth.
J Bacteriol. 1992 Jul;174(13):4450-6. doi: 10.1128/jb.174.13.4450-4456.1992.
3
Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli.
J Bacteriol. 1988 Mar;170(3):1069-75. doi: 10.1128/jb.170.3.1069-1075.1988.
5
Synthesis and metabolism of uracil-containing deoxyribonucleic acid in Escherichia coli.
J Bacteriol. 1981 Feb;145(2):687-95. doi: 10.1128/jb.145.2.687-695.1981.
6
Absence of pyrimidine insertase activity in E. coli extracts, using plasmid DNA containing apyrimidinic sites.
Mutat Res. 1984 Sep-Oct;132(3-4):87-93. doi: 10.1016/0167-8817(84)90002-6.
7
Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair.
Mol Microbiol. 2004 Mar;51(5):1279-95. doi: 10.1111/j.1365-2958.2003.03924.x.
9
Quantitative determination of uracil residues in Escherichia coli DNA: Contribution of ung, dug, and dut genes to uracil avoidance.
DNA Repair (Amst). 2006 Dec 9;5(12):1407-20. doi: 10.1016/j.dnarep.2006.06.009. Epub 2006 Aug 14.
10
Excision repair of thymine glycols, urea residues, and apurinic sites in Escherichia coli.
J Bacteriol. 1988 Aug;170(8):3359-66. doi: 10.1128/jb.170.8.3359-3366.1988.

引用本文的文献

2
Escherichia coli induces DNA repair enzymes to protect itself from low-grade hydrogen peroxide stress.
Mol Microbiol. 2022 Apr;117(4):754-769. doi: 10.1111/mmi.14870. Epub 2022 Jan 13.
7
The DNA Exonucleases of Escherichia coli.
EcoSal Plus. 2011 Dec;4(2). doi: 10.1128/ecosalplus.4.4.7.
8
Specificity and catalytic mechanism in family 5 uracil DNA glycosylase.
J Biol Chem. 2014 Jun 27;289(26):18413-26. doi: 10.1074/jbc.M114.567354. Epub 2014 May 16.
9
PFunkel: efficient, expansive, user-defined mutagenesis.
PLoS One. 2012;7(12):e52031. doi: 10.1371/journal.pone.0052031. Epub 2012 Dec 17.

本文引用的文献

1
An inducible DNA replication-cell division coupling mechanism in E. coli.
Nature. 1981 Apr 30;290(5809):797-9. doi: 10.1038/290797a0.
2
Linkage map of Escherichia coli K-12, edition 6.
Microbiol Rev. 1980 Mar;44(1):1-56. doi: 10.1128/mr.44.1.1-56.1980.
4
Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA.
Proc Natl Acad Sci U S A. 1980 Aug;77(8):4602-6. doi: 10.1073/pnas.77.8.4602.
5
Repair of x-ray-induced deoxyribonucleic acid single-strand breaks in xth mutants of Escherichia coli.
J Bacteriol. 1980 Mar;141(3):1424-7. doi: 10.1128/jb.141.3.1424-1427.1980.
6
Synthesis and metabolism of uracil-containing deoxyribonucleic acid in Escherichia coli.
J Bacteriol. 1981 Feb;145(2):687-95. doi: 10.1128/jb.145.2.687-695.1981.
7
Pyrimidine metabolism in microorganisms.
Bacteriol Rev. 1970 Sep;34(3):278-343. doi: 10.1128/br.34.3.278-343.1970.
8
Mass screening for mutants with altered DNases by microassay techniques.
Methods Enzymol. 1974;29:180-93. doi: 10.1016/0076-6879(74)29020-7.
9
Heat-induced deamination of cytosine residues in deoxyribonucleic acid.
Biochemistry. 1974 Jul 30;13(16):3405-10. doi: 10.1021/bi00713a035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验