Sullivan D C, Atherton S S, Staczek J, O'Callaghan D J
Virology. 1984 Jan 30;132(2):352-67. doi: 10.1016/0042-6822(84)90041-2.
Restriction endonuclease mapping studies were performed to determine the molecular structure of the genome of equine herpesvirus type 3 (EHV-3). Purified EHV-3 DNA, either unlabeled or 32P-labeled, was analyzed using the restriction enzymes BamHI, BclI, BglII, EcoRI, and HindIII. The findings that four 0.5 M (molar) fragments were present, that two of these were terminal fragments, and that all 0.5 M fragments contained homologous DNA sequences as judged by DNA hybridization analyses indicated that DNA sequences located at one terminus are repeated within the molecule and that two populations of molecules exist with regard to the arrangement of this pair of shared sequences. Mapping of BamHI, BclI, BglII, EcoRI, and HindIII fragments by double digestion of intact EHV-3 DNA, reciprocal digestion of isolated restriction enzyme fragments, and blot hybridization experiments revealed that the EHV-3 genome is a linear, double-stranded DNA molecule with a molecular size of 96.2 +/- 0.48 MDa and is comprised of two covalently linked segments, designated L (long) and S (short). The S region is approximately 22.9 MDa in size and consists of a unique segment (Us) of approximately 5.8 MDa bracketed by 8.5 MDa inverted repeat sequences that allow the S region to invert relative to the fixed L region which is approximately 73.3 MDa in size and consists only of unique sequences. Thus, these data confirm that EHV-3 DNA exists in two isomeric forms and has a molecular structure similar to that of the genomes of EHV-1 (B. E. Henry, S. A. Robinson, S. A. Dauenhauer, S. S. Atherton, G. S. Hayward, and D. J. O'Callaghan, Virology 115, 97-114, 1981; D. J. O'Callaghan, G. A. Gentry, and C. C. Randall, "The Herpesvirus," Vol. 2, pp. 215-318, Plenum, New York, 1983; D. J. O'Callaghan, B. E. Henry, J. H. Wharton, S. A. Dauenhauer, R. B. Vance, J. Staczek, and R. A. Robinson, "Developments in Molecular Virology," Vol. 1, pp. 387-418, Nijhoff, The Hague, 1981; W. T. Ruyechan, S. A. Dauenhauer, and D. J. O'Callaghan, J. Virol., 42, 297-300, 1982), pseudorabies virus (W. Stevely, J. Virol., 22, 232-234, 1977; T. Ben-Porat, F. J. Rixon, and M. L. Blankenship, Virology, 95, 285-294, 1979), varicella-zoster virus (A. M. Dumas, J. L. Geelen, M. W. Weststrate, P. Wertheim, and J. Van Der Noordaa, J. Virol., 39, 390-400, 1981; S. E. Straus, H. S. Aulakh, W. T. Ruyechan, J. Hay, T. A. Casey, G. F. Vande Woude, J. Owens, and H. A. Smith, J. Virol., 40, 516-525, 1981.(ABSTRACT TRUNCATED AT 400 WORDS)
进行了限制性内切酶图谱分析研究,以确定马疱疹病毒3型(EHV - 3)基因组的分子结构。使用限制性内切酶BamHI、BclI、BglII、EcoRI和HindIII对未标记或32P标记的纯化EHV - 3 DNA进行分析。DNA杂交分析表明存在四个0.5M(摩尔)片段,其中两个是末端片段,并且所有0.5M片段都包含同源DNA序列,这表明位于一个末端的DNA序列在分子内重复,并且就这对共享序列的排列而言存在两种分子群体。通过对完整EHV - 3 DNA进行双酶切、对分离的限制性酶切片段进行相互酶切以及印迹杂交实验,对BamHI、BclI、BglII、EcoRI和HindIII片段进行图谱绘制,结果显示EHV - 3基因组是一个线性双链DNA分子,分子大小为96.2±0.48 MDa,由两个共价连接的片段组成,分别命名为L(长)和S(短)。S区域大小约为22.9 MDa,由一个约5.8 MDa的独特片段(Us)组成,两侧是8.5 MDa的反向重复序列,这使得S区域能够相对于大小约为73.3 MDa且仅由独特序列组成的固定L区域发生倒位。因此,这些数据证实EHV - 3 DNA以两种异构体形式存在,并且其分子结构与EHV - (B. E. Henry、S. A. Robinson、S. A. Dauenhauer、S. S. Atherton、G. S. Hayward和D. J. O'Callaghan,《病毒学》115,97 - 114,1981;D. J. O'Callaghan、G. A. Gentry和C. C. Randall,《疱疹病毒》,第2卷,第215 - 318页,Plenum,纽约,1983;D. J. O'Callaghan、B. E. Henry、J. H. Wharton、S. A. Dauenhauer、R. B. Vance、J. Staczek和R. A. Robinson,《分子病毒学进展》,第1卷,第387 - 418页,Nijhoff,海牙,1981;W. T. Ruyechan、S. A. Dauenhauer和D. J. O'Callaghan,《病毒学杂志》,42,297 - 300,1982)、伪狂犬病病毒(W. Stevely,《病毒学杂志》,22,232 - 234,1977;T. Ben - Porat、F. J. Rixon和M. L. Blankenship,《病毒学》,95,285 - 294,1979)、水痘 - 带状疱疹病毒(A. M. Dumas、J. L. Geelen、M. W. Weststrate、P. Wertheim和J. Van Der Noordaa,《病毒学杂志》,39,390 - 400,1981;S. E. Straus、H. S. Aulakh、W. T. Ruyechan、J. Hay、T. A. Casey、G. F. Vande Woude、J. Owens和H. A. Smith,《病毒学杂志》,40,516 - 525,1981)的基因组相似。(摘要截断于400字)