Koch C
Biol Cybern. 1984;50(1):15-33. doi: 10.1007/BF00317936.
This investigation aims at exploring some of the functional consequences of single neurons containing active, voltage dependent channels for information processing. Assuming that the voltage change in the dendritic tree of these neurons does not exceed a few millivolts, it is possible to linearize the non-linear channel conductance. The membrane can then be described in terms of resistances, capacitances and inductances, as for instance in the small-signal analysis of the squid giant axon. Depending on the channel kinetics and the associated ionic battery the linearization yields two basic types of membrane: a membrane modeled by a collection of resistances and capacitances and membranes containing in addition to these components inductances. Under certain specified conditions the latter type of membrane gives rise to a membrane impedance that displays a prominent maximum at some nonzero resonant frequency fmax. We call this type of membrane quasi-active, setting it apart from the usual passive membrane. We study the linearized behaviour of active channels giving rise to quasi-active membranes in extended neuronal structures and consider several instances where such membranes may subserve neuronal function: 1. The resonant frequency of a quasi-active membrane increases with increasing density of active channels. This might be one of the biophysical mechanisms generating the large range over which hair cells in the vertebrate cochlea display frequency tuning. 2. The voltage recorded from a cable with a quasi-active membrane can be proportional to the temporal derivative of the injected current. 3. We modeled a highly branched dendritic tree (delta-ganglion cell of the cat retina) using a quasi-active membrane. The voltage attenuation from a given synaptic site to the soma decreases with increasing frequency up to the resonant frequency, in sharp contrast to the behaviour of passive membranes.(ABSTRACT TRUNCATED AT 400 WORDS)
本研究旨在探索单个含有活性电压依赖性通道的神经元对信息处理的一些功能影响。假设这些神经元树突中的电压变化不超过几毫伏,则有可能使非线性通道电导线性化。然后,就像在鱿鱼巨轴突的小信号分析中那样,可以用电阻、电容和电感来描述细胞膜。根据通道动力学和相关的离子电池,线性化产生两种基本类型的膜:一种由电阻和电容集合建模的膜,以及除这些组件外还包含电感的膜。在某些特定条件下,后一种类型的膜会产生一种膜阻抗,该阻抗在某个非零共振频率fmax处显示出一个突出的最大值。我们称这种类型的膜为准活性膜,以区别于通常的被动膜。我们研究了在扩展的神经元结构中产生准活性膜的活性通道的线性化行为,并考虑了这种膜可能有助于神经元功能的几个实例:1. 准活性膜的共振频率随着活性通道密度的增加而增加。这可能是脊椎动物耳蜗中毛细胞显示频率调谐的大范围的生物物理机制之一。2. 从具有准活性膜的电缆记录的电压可以与注入电流的时间导数成正比。3. 我们使用准活性膜对高度分支的树突树(猫视网膜的δ神经节细胞)进行了建模。从给定突触位点到胞体的电压衰减在达到共振频率之前随着频率的增加而降低,这与被动膜的行为形成鲜明对比。(摘要截断于400字)