Gupte S, Wu E S, Hoechli L, Hoechli M, Jacobson K, Sowers A E, Hackenbrock C R
Proc Natl Acad Sci U S A. 1984 May;81(9):2606-10. doi: 10.1073/pnas.81.9.2606.
Fluorescence recovery after photobleaching was used to determine the diffusion coefficients of the oxidation-reduction (redox) components ubiquinone, complex III (cytochromes b-c1), cytochrome c, and complex IV (cytochrome oxidase) of the mitochondrial inner membrane. All redox components diffuse in two dimensions as common-pool electron carriers. Cytochrome c diffuses in two and three dimensions concomitantly, and its diffusion rate, unlike that of all other redox components, is modulated along with its activity by ionic strength. The diffusion coefficients established in this study reveal that the theoretical diffusion-controlled collision frequencies of all redox components are greater than their experimental maximum (uncoupled) turnover numbers. Since electron transport is slower than the theoretical limit set by the lateral diffusion of the redox components, ordered chains, assemblies, or aggregates of redox components are not necessary to account for electron transport. Rather, mitochondrial electron transport is diffusion coupled, consistent with a "random-collision model" for electron transport.
采用光漂白后荧光恢复技术测定线粒体内膜氧化还原(redox)成分泛醌、复合物III(细胞色素b-c1)、细胞色素c和复合物IV(细胞色素氧化酶)的扩散系数。所有氧化还原成分作为共同池电子载体在二维空间中扩散。细胞色素c同时在二维和三维空间中扩散,并且与所有其他氧化还原成分不同,其扩散速率会随离子强度与其活性一起受到调节。本研究确定的扩散系数表明,所有氧化还原成分的理论扩散控制碰撞频率均大于其实验最大(解偶联)周转数。由于电子传递比氧化还原成分横向扩散所设定的理论极限慢,因此无需氧化还原成分的有序链、组装体或聚集体来解释电子传递。相反,线粒体电子传递是扩散偶联的,这与电子传递的“随机碰撞模型”一致。