Asbóth B, Polgár L
Biochemistry. 1983 Jan 4;22(1):117-22. doi: 10.1021/bi00270a017.
X-ray diffraction studies suggested that the tetrahedral intermediate formed during the catalysis by serine and thiol proteinases can be stabilized by hydrogen bonds from the protein to the oxyanion of the intermediate [cf. Kraut, J. (1977) Annu. Rev. Biochem. 46, 331-358; Drenth, J., Kalk, K.H., & Swen, H.M. (1976) Biochemistry 15, 3731-3738]. To obtain evidence in favor or against this hypothesis, we synthesized thiono substrates (the derivatives of N-benzoyl-glycine methyl ester and N-acetylphenylalanine ethyl ester) containing a sulfur in place of the carbonyl oxygen atom of the scissile ester bond. We anticipated that this relatively subtle structural change specifically directed to the oxyanion binding site should produce serious catalytic consequences owing to the different properties of oxygen and sulfur if transition-state stabilization in the oxyanion hole is indeed important. In fact, while in alkaline hydrolysis the chemical reactivities of oxygen esters and corresponding thiono esters proved to be similar, neither chymotrypsin nor subtilisin hydrolyzed the thiono esters at a measurable rate. This result substantiates the crucial role of the oxyanion binding site in serine proteinase catalysis. On the basis of the similar values of the binding constants found for oxygen esters and their thiono counterparts, it can be concluded that the substitution of sulfur for oxygen significantly influences transition state stabilization but not substrate binding. The thiol proteinases papain and chymopapain react with the oxygen and thiono esters of N-benzoylglycine at similar rates. Apparently, in these reactions the above stabilizing mechanism is absent or not important, which is a major mechanistic difference between the catalyses by serine and thiol proteinases.
X射线衍射研究表明,丝氨酸蛋白酶和硫醇蛋白酶催化过程中形成的四面体中间体可通过蛋白质与中间体氧阴离子之间的氢键得到稳定[参见Kraut, J. (1977)《生物化学年度评论》46, 331 - 358;Drenth, J., Kalk, K.H., & Swen, H.M. (1976)《生物化学》15, 3731 - 3738]。为了获得支持或反对这一假设的证据,我们合成了硫代底物(N - 苯甲酰甘氨酸甲酯和N - 乙酰苯丙氨酸乙酯的衍生物),其中硫原子取代了可裂解酯键的羰基氧原子。我们预计,由于氧和硫性质不同,如果氧阴离子空穴中的过渡态稳定确实重要,那么这种专门针对氧阴离子结合位点的相对细微的结构变化应该会产生严重的催化后果。事实上,虽然在碱性水解中氧酯和相应硫代酯的化学反应性相似,但胰凝乳蛋白酶和枯草杆菌蛋白酶均不能以可测量的速率水解硫代酯。这一结果证实了氧阴离子结合位点在丝氨酸蛋白酶催化中的关键作用。基于氧酯及其硫代类似物的结合常数相似的值,可以得出结论,用硫取代氧会显著影响过渡态稳定,但不影响底物结合。硫醇蛋白酶木瓜蛋白酶和糜木瓜蛋白酶与N - 苯甲酰甘氨酸的氧酯和硫代酯反应速率相似。显然,在这些反应中不存在上述稳定机制或该机制不重要,这是丝氨酸蛋白酶和硫醇蛋白酶催化机制的一个主要差异。