Entian K D, Fröhlich K U
J Bacteriol. 1984 Apr;158(1):29-35. doi: 10.1128/jb.158.1.29-35.1984.
A selection system has been devised for isolating hexokinase PII structural gene mutants that cause defects in carbon catabolite repression, but retain normal catalytic activity. We used diploid parental strains with homozygotic defects in the hexokinase PI structural gene and with only one functional hexokinase PII allele. Of 3,000 colonies tested, 35 mutants (hex1r) did not repress the synthesis of invertase, maltase, malate dehydrogenase, and respiratory enzymes. These mutants had additional hexokinase PII activity. In contrast to hex1 mutants (Entian et al., Mol. Gen. Genet. 156:99-105, 1977; F.K. Zimmermann and I. Scheel, Mol. Gen. Genet. 154:75-82, 1977), which were allelic to structural gene mutants of hexokinase PII and had no catalytic activity (K.-D. Entian, Mol. Gen. Gent. 178:633-637, 1980), the hex1r mutants sporulated hardly at all or formed aberrant cells. Those ascospores obtained were mostly inviable. As the few viable hex1r segregants were sterile, triploid cells were constructed to demonstrate allelism between hex1r mutants and hexokinase PII structural gene mutants. Metabolite concentrations, growth rate, and ethanol production were the same in hex1r mutants and their corresponding wild-type strains. Recombination of hexokinase and glucokinase alleles gave strains with different specific activities. The defect in carbon catabolite repression was strongly associated with the defect in hexokinase PII and was independent of the glucose phosphorylating capacity. Hence, a secondary effect caused by reduced hexose phosphorylation was not responsible for the repression defect in hex1 mutants. These results, and those with the hex1r mutants isolated, strongly supported our earlier hypothesis that hexokinase PII is a bifunctional enzyme with (i) catalytic activity and (ii) a regulatory component triggering carbon catabolite repression (Entian, Mol. Gen. Genet. 178:633-637, 1980; K.-D. Entian and D. Mecke, J. Biol. Chem. 257:870-874, 1982).
已设计出一种筛选系统,用于分离己糖激酶PII结构基因突变体,这些突变体在碳代谢物阻遏方面存在缺陷,但保留正常的催化活性。我们使用了在己糖激酶PI结构基因中具有纯合缺陷且仅具有一个功能性己糖激酶PII等位基因的二倍体亲本菌株。在测试的3000个菌落中,35个突变体(hex1r)不能阻遏转化酶、麦芽糖酶、苹果酸脱氢酶和呼吸酶的合成。这些突变体具有额外的己糖激酶PII活性。与己糖激酶PII结构基因突变体等位且无催化活性的hex1突变体(Entian等人,《分子遗传学与普通遗传学》156:99 - 105,1977;F.K. Zimmermann和I. Scheel,《分子遗传学与普通遗传学》154:75 - 82,1977)不同,hex1r突变体几乎完全不产孢或形成异常细胞。所获得的那些子囊孢子大多不可存活。由于少数存活的hex1r分离株不育,构建了三倍体细胞以证明hex1r突变体与己糖激酶PII结构基因突变体之间的等位关系。hex1r突变体及其相应野生型菌株中的代谢物浓度、生长速率和乙醇产量相同。己糖激酶和葡萄糖激酶等位基因的重组产生了具有不同比活性的菌株。碳代谢物阻遏缺陷与己糖激酶PII缺陷密切相关,且与葡萄糖磷酸化能力无关。因此,己糖磷酸化减少引起的次级效应不是hex1突变体中阻遏缺陷的原因。这些结果以及分离得到的hex1r突变体的结果,有力地支持了我们早期的假设,即己糖激酶PII是一种双功能酶,具有(i)催化活性和(ii)触发碳代谢物阻遏的调节成分(Entian,《分子遗传学与普通遗传学》178:633 - 637,1980;K.-D. Entian和D. Mecke,《生物化学杂志》257:870 - 874,1982)。