Suppr超能文献

Damage to mitochondrial electron transport and energy coupling by visible light.

作者信息

Aggarwal B B, Quintanilha A T, Cammack R, Packer L

出版信息

Biochim Biophys Acta. 1978 May 10;502(2):367-82. doi: 10.1016/0005-2728(78)90057-9.

Abstract

The effect of treating mitochondria with visible light above 400 nm on electron transport and coupled reactions was examined. The temporal sequence of changes was: stimulation of respiration coupled to ATP synthesis, a decline in ATP synthesis, inactivation of respiration, increased ATPase activity and, later, loss of the membrane potential. Loss of respiration was principally due to inactivation of dehydrogenases. Of the components of dehydrogenase systems, flavins and quinones were most susceptible to illumination, the iron-sulfur centers were remarkably resistant to being damaged. Succinate dehydrogenase was inactivated before choline and NADH dehydrogenase. Redox reactions of cytochromes and cytochrome c oxidase activity were unaffected. Inactivation was O2-dependent and prevented by anaerobiosis or the presence of substrates for the dehydrogenases. Light in the range 400-500 nm was most effective and the presence of free flavins greatly enhanced inactivation of all of the above mitochondrial activities. This suggests that visible light mediates a flavin-photosensitized reaction that initiates damage involving participation of an activated species of oxygen in the damage propagation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验