Suppr超能文献

确定晚期 EGFR 突变型非小细胞肺癌 I/II 期临床试验中达克替尼和奥希替尼的最佳剂量方案。

Identification of optimal dosing schedules of dacomitinib and osimertinib for a phase I/II trial in advanced EGFR-mutant non-small cell lung cancer.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Department of Data Science, Dana Farber Cancer Institute, Boston, MA, USA.

出版信息

Nat Commun. 2021 Jun 17;12(1):3697. doi: 10.1038/s41467-021-23912-4.

Abstract

Despite the clinical success of the third-generation EGFR inhibitor osimertinib as a first-line treatment of EGFR-mutant non-small cell lung cancer (NSCLC), resistance arises due to the acquisition of EGFR second-site mutations and other mechanisms, which necessitates alternative therapies. Dacomitinib, a pan-HER inhibitor, is approved for first-line treatment and results in different acquired EGFR mutations than osimertinib that mediate on-target resistance. A combination of osimertinib and dacomitinib could therefore induce more durable responses by preventing the emergence of resistance. Here we present an integrated computational modeling and experimental approach to identify an optimal dosing schedule for osimertinib and dacomitinib combination therapy. We developed a predictive model that encompasses tumor heterogeneity and inter-subject pharmacokinetic variability to predict tumor evolution under different dosing schedules, parameterized using in vitro dose-response data. This model was validated using cell line data and used to identify an optimal combination dosing schedule. Our schedule was subsequently confirmed tolerable in an ongoing dose-escalation phase I clinical trial (NCT03810807), with some dose modifications, demonstrating that our rational modeling approach can be used to identify appropriate dosing for combination therapy in the clinical setting.

摘要

尽管第三代 EGFR 抑制剂奥希替尼作为 EGFR 突变型非小细胞肺癌 (NSCLC) 的一线治疗取得了临床成功,但由于获得了 EGFR 第二部位突变和其他机制,仍会出现耐药性,因此需要替代疗法。达克替尼是一种泛 HER 抑制剂,已被批准用于一线治疗,与奥希替尼不同,它会导致不同的获得性 EGFR 突变,从而介导靶向耐药。因此,奥希替尼和达克替尼联合使用可以通过防止耐药性的出现,诱导更持久的反应。在这里,我们提出了一种综合计算建模和实验方法,以确定奥希替尼和达克替尼联合治疗的最佳给药方案。我们开发了一个预测模型,该模型包含肿瘤异质性和个体间药代动力学变异性,用于预测不同给药方案下的肿瘤演变,该模型使用体外剂量反应数据进行参数化。该模型使用细胞系数据进行了验证,并用于确定最佳的联合给药方案。我们的方案随后在正在进行的剂量递增 I 期临床试验 (NCT03810807) 中得到了耐受,进行了一些剂量调整,证明了我们合理的建模方法可用于确定临床联合治疗的适当剂量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd5b/8211846/5d96ac980c7e/41467_2021_23912_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验